<u>6.3: The Dual Problem: Minimization with</u> \geq <u>Problem Constraints</u>

The simplex method can be modified to solve minimization problems.

The transpose of a matrix:

The transpose of a matrix A is called A^{T} and is formed by interchanging the rows and columns of A.

Example 1: Find the transpose of
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
.

The dual problem:

Every minimization problem with \geq constraints can be associated with a maximization problem with \leq constraints. This maximization problem is called the *dual problem*.

Example 1: Minimize $C = 2y_1 + y_2$ Subject to $y_1 + y_2 \ge 8$ $y_1 + 2y_2 \ge 4$ $y_1 \ge 0$ $y_2 \ge 0$

First, we create a matrix A using the constraints and the objective function, with the objective function on the bottom row:

Next, form the transpose A^T :

From the transpose, write a new linear programming problem with new variables:

The dual problem is:

Theorem of Duality:

The objective function w of a minimizing linear programming problem takes on a minimum value if and only if the objective function z of the corresponding dual maximizing problem takes on a maximum value. The maximum value of z is equal to the minimum value of w.

So, after forming the dual problem, use the simplex method to solve it.

- For slack variables, use the variables of the original minimization problem.
- When writing the solution, the values of the original variables are read from the bottom row.

Example 2: (Example from Section 5.3—plant food)

Minimize $C = 30x_1 + 35x_2$ Subject to $20x_1 + 10x_2 \ge 460$ $30x_1 + 30x_2 \ge 960$ $5x_1 + 10x_2 \ge 220$ $x_1 \ge 0$ $x_2 \ge 0$ **Example 3:** An oil company operates two refineries in a certain city. Refinery I has an output of 200, 100, and 100 barrels of low-, medium-, and high-grade oil per day, respectively. Refinery II has an output of 100, 200, and 600 barrels of low-, medium-, and high-grade oil per day, respectively. The company wishes to produce at least 1000, 1400, and 3000 barrels of low-, medium-, and high-grade oil to fill an order. If it costs \$20,000/day to operate refinery I and \$30,000/day to operate refinery II, determine how many days each refinery should be operated to meet the requirements of the order at minimum cost to the company.