7.2: Sets

<u>Definition</u>: A set is a well-defined collection of objects. Each object in a set is called an *element* of that set.

Examples of sets: All players on Astros voster All students enrolled in this class All integers Not sets: All short people (not well-defined) All tall people KII cute dogs

Sets can be finite or infinite.

Notation:

- We usually use capital letters for sets. We usually use lower-case letters for elements of a set.
- $a \in A$ means a is an element of the set A. $a \notin A$ $a \notin A$ means a is not an element of the set A. $a \notin A$
- The *empty set* is the set with no elements. It is denoted \emptyset . This is sometimes called the *null set*.
- $S = \{x \mid P(x)\}$ means "S is the set of all x such that P(x) is true". (called rule notation or set roster notation).

<u>Example</u>: $S = \{x \mid x \text{ is an even positive integer}\}$ means $S = \{2, 4, 6, 8, ...\}$ <u>Definition</u>: We say two sets are *equal* if they have exactly the same elements.

Subsets:

<u>Definition</u>: If each element of a set A is also an element of set B, we say that A is a *subset* of B. This is denoted $A \subseteq B$ or $A \subset B$. If A is not a subset of B, we write $A \not\subset B$.

 $A \subseteq B$ "A is a subset of B if $A \subseteq B$ but $A \neq B$. (In other words, every element of A is a solution also an element of B, but B contains at least one element that is not in A.)

<u>Note on notation</u>: Some books use the symbol \subset to indicate a proper subset. Some books use \subset to indicate any subset, proper or not.

<u>Definition</u>: The set of all elements under consideration is called the *universal set*, usually denoted U. Example: If you're dealing with sets of real numbers, then U is the set of all real numbers. So "Wednesday" would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets.

	A = C	also ACC
$A = \{1, 2, 3, 4, 5, 6\}$	A⊆ B	and CEA
$B = \{1, 2, 3, 4, 5, 6, 7, 8\}$	CEB	(not proper subcerts)
$C = \{1, 3, 5, 2, 4, 6\}$		
<u>:</u> :	A is a proper	subset at B but not a proper subset of c

Note:

- \emptyset is a subset of every set. (i.e. $\emptyset \subseteq A$ for every set A.)
- Every set is a subset of itself. (i.e. $A \subseteq A$ for every set A.)

N

• Union \cup : $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$

- Intersection \cap : $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ Very word: AND
- Complement A' or A^{c} or $A^{\tilde{}}$: $A' = \{x \in U \mid x \notin A\}$.

key word: NOT
$$A = A^{-} = A$$

Note: $A \subseteq (A \cup B)$ and $B \subseteq (A \cup B)$. $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$. <u>Definition</u>: We say that A and B are *disjoint sets* if $A \cap B = \emptyset$.

Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for $A \cup B$, $A \cap B$, A', $(A \cap B)'$, $A' \cap B'$, and $A' \cap B$.

Example 5: On a Venn diagram, shade $A \cup B \cup C$, $A \cap B \cap C$, and $(A \cup B') \cap C$.

Example 6: Consider a group of students. 30 of them are enrolled in a math course and 35 are enrolled in an English course. 13 of the students are enrolled in an English course and also a math course. How many students are enrolled in math or English?

n(m) = 30n(E) = 35n(mnE) = 13

$$M = \frac{1}{2} + \frac{1}{2} +$$

Notation: n(A) means the number of elements in set A.

Addition principle for Counting

For any two sets A and B,

$$n(A \cup B) = n(A) + n(B) - n(A \cap B).$$

Previous example

If A and B are disjoint $(A \cap B = \emptyset)$, then $n(A \cup B) = n(A) + n(B)$.

Example 7: 100 students are surveyed to determine if they had watched ESPN or Fox Sports Channel in the last 3 months. The results show that 65 students watched ESPN, 55 watched Fox Sports, and 30 watched neither.

using Addition Principle; n (MUE)= n(M)+n(E) - n(MNE)

= 30 + 35 - 13

=65-13

- a. How many people watched ESPN but not Fox Sports?
- b. How many people watched Fox Sports but not ESPN?
- c. How many watched both networks?

Example 8: I want to buy a car from Jay Austin Motors. Of all the cars on the lot, 89 cars have navigation systems, 100 have touch-screen controls, and 74 have blind spot alert systems. 32 cars have both navigation systems and blind spot alert, 40 have both a touch screen and a blind spot alert system, and 53 have a touch screen and a navigation system. Twelve cars have all three features, and 21 cars are base models with none of these features.

I strongly dislike having a touch screen, but I would like a navigation system and a blind spot alert system. How many cars do I have to choose from?

How many cars are on Jay Austin's lot?