4.4.1

4.4: Matrices-Basic Operations

We will learn how to add matrices and how to multiply a matrix by a number (scalar).
Equality:
Two matrices are egual if they are the same size and all the corresponding elements are equal.

Example 1:
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Addition:

Matrices can be added only if they are the same size. In this case, we add the corresponding
elements in the matrices.
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Addition of numbers is associative and commutative. Addition of matrices is associative and
commutative also.

e Commutative: A+B=8B+A4

e Associative: (A+B)+C=4+(B+(C)
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A zero matrix is a matrix with zero in all positions. The following are zero matrices of different
sizes:
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The negative of a matrix A, denoted —A , is the matrix with all elements that are the opposites of
the corresponding elements in the matrix A.
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ENTEA

As with addition, subtraction can be performed only if matrices are the same size. The
difference 4 - B is defined to be 4+(—B). So to subtract, we just subtract the corresponding

Example 3: A = 5 '\’l&

Subtraction:

elements.

Example 4:
— I 2 -6] [0 =2 =2 \-O - —-(-7)
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Multiplication of a matrix by a number:

The product of a number & and a matrix M, denoted by kM, is the matrix formed by multiplying
each element of M by k. This is often called scalar multiplication.

Example S:
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Product of a row matrix and a column matrix (in that order):

The product of a 1x#n row matrix 4 and an nx1 column matrix is the 1x1 matrix given by

bl
b1
AB = [“| a,: ’f-’,.-] J= [(:,bl +ayh, ++ (r”b”].
[CEN b, I
e

Note: For this formula to hold, they must be in this order: row x column. If they are in the other
order (columnxrow), you get a different result. We’ll see one like this later.

Note: The number of elements in the row and column must be the same in order for the
multiplication to be defined.

Example 6:
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Matrix multiplication:
IfAisan mxp and Bis a pru&amALhcn the product of these is denoted 4B and it is an

(W\*@*V\\) = me n}

The entries in the matrix 4B are formed as follows: the element in the ith row and jth column is
the product of the ith row of A with the jth column of B.

mxn matrix.

Important Note: 1f the number of columns of A4 is not equal to the number of rows of B, the
product AB is not defined! The matrices cannot be multiplied!!
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Example 7:
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Example 11:
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Example 13: e,
Lﬂl -3}{3 6}: (q)o(‘\&;g\ a‘ﬁ on
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Example 14: L . 2\ [ ot 3
3001 5] = (-3 0\ 5 = 3
0 -2 7 o -2 | ‘o~
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