6.3: The Dual Problem: Minimization with > Problem Constraints

The simplex method can be modified to solve minimization problems.
The transpose of a matrix:
The transpose of a matrix 4 is called A" and is formed by interchanging the rows and columns

of A.

Example 1: Find the transpose ot 4 =| 3
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The dual problem:

Every minimization problem with > constraints can be associated with a maximization problem
with < constraints. This maximization problem 1s called the dual problem.

Example 1:  Minimize C =2y, +7,
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First, we create a matrix 4 using the constraints and the objective function, with the objective
function on the bottom row:
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Next, form the transpose A" :
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From the transpose, write a new linear programming problem with|new variables: \
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Theorem of Duality:

The objective function w of a minimizing linear programming problem takes on a minimum
value 1f and only if the objective function = of the corresponding dual maximizing problem
takes on a maximum value. The maximum value of z 1s equal to the minimum value of w.

So, after forming the dual problem. use the simplex method to solve it.
¢ For slack variables, use the variables of the original minimization problem.
¢ When writing the solution, the values of the original variables are read from the bottom
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Example 2: (Example from Section 5.3—plant food)
Minimize C =30x, +35x,

Subject to 20x; +10x, > 460
30x, +30x, =960
Sx; +10x, =220
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Example 3: An o1l company operates two refineries in a certain city. Refinery I has an output
of 200, 100, and 100 barrels of low-, medium-, and high-grade oil per day, respectively.
Refinery II has an output of 100, 200, and 600 barrels of low-. medium-, and high-grade oil per
day, respectively. The company wishes to produce at least 1000, 1400, and 3000 barrels of low-,
medium-, and high-grade oil to fill an order. If it costs $20,000/day to operate refinery I and
$30,000/day to operate refinery II, determine how many days each refinery should be operated
to meet the requirements of the order at minimum cost to the company.



