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7.2: Sets

Definition: A sef 1s a well-defined collection of objects. Each object 1n a set 1s called an element of that

set.
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Sets can be finite or infinite.
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Examples of infinite sets:
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Notation:
o  We usually use capital letters for sets.
We usually use lower-case letters for elements of a set. Vle anm
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The empty set i\\s the set with no elements. It 1s denoted &J. This 1s sometimes called the null set.
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Example: § ={x|x is an even positive integer} means S ={2,4,6,8, .}
Definition: We say two sets are equal 1f they have exactly the same elements.
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Subsets:

Detinition: If each element of a set 4 1s also an element of set B, we say that 4 1s a subset of B. This is
denoted AcB or Ac B. If A1snotasubset of B, wewrite Az B..
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Detinition: We say 4 1s a proper subset of Bit A< B but A+ B. (In other words, every element of 4 1s
also an element of B, but B contains at least one element that 1s not in 4.)

Note on notation: Some books use the symbol — to indicate a proper subset. Some books use — to
indicate any subset, proper or not.
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Definition: The set of all elements under consideration 1s called the universal set, usually denoted U.

Example: If you're dealing with sets of real numbers, then U is the set of all real numbers. So
“Wednesday” would not be an element of U, but 5.7 would be in U.
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Note:
o O isasubset of every set. (1.e. &< A4 for every set 4.)
o Every setis a subset of itself. (1.e. A< A for every set 4.)
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Set operations:
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Note: Ag(AuB) and Bc;(AuB).
(AmB)c;A and(AmB)gB.



Definition: We say that 4 and B are disjoint sets if AnB=J.

Example 3: U ={1,2,3,4,5,6,7,8} WA = {1,3,53
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Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for AuB, AnB, A", (AnB)', A'mB',and A'nB.
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Example 5: On a Venn diagram, shade A0BU(C, AnBnC,and (AUB)NC.
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Example 6: Consider a group ot%fgudents. 30 of them are enrolled in a math course and 35 are enrolled in
an English course. 13 of the students are enrolled in an English course and also a math course. How
many students are enrolled in math or English?
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Notation: n(A4) means the number of elements in set A.

Addition principle for Counting

For any two sets 4 and B,

n(AuB)=n(A)+n(B)—n(Ar‘xB).

If 4 and B are disjoint (AN B =), then n(AUB)=n(A4)+n(B).

Example 7: 100 students are surveyed to determine if they had watched ESPN or Fox Sports Channel in
the last 3 months. The results show that 65 students watched ESPN, 55 watched Fox Sports, and 30

watched neither. 3o g,océ\-z)v\:) P
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a. How many people watched ESPN but not Fox Sports? - P

b. How many people watched Fox Sports but not ESPN? r_F ?-20{»‘9&-— UD\"O
¢. How many watched both networks? ‘
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1.2.6
Example 8: I want to buy a car from Jay Austin Motors. Of all the cars on the lot, 89 cars have

navigation systems, 100 have touch-screen controls, and 74 have blind spot alert systems. 32 cars
have both navigation systems and blind spot alert, 40 have both a touch screen and a blind spot alert
system, and 53 have a touch screen and a navigation system. Twelve cars have all three features, and
21 cars are base models with none of these features.

I strongly dislike having a touch screen, but I would like a navigation system and a blind spot alert
system. How many cars do I have to choose from?

How many cars are on Jay Austin’s lot?
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