$1324\hbox{-}BZBS14e_Notes\hbox{-}3\hbox{-}2\hbox{-}compound\hbox{-}interest$

Thursday, July 25, 2019 7:11 AM

 $1324\hbox{-}BZBS14e_Notes\hbox{-}3\hbox{-}2\hbox{-}compound\hbox{-}interest$

(200-, \$1000(1.02)

3.2: Compound Interest

If at the end of a payment period, the interest due is reinvested at the same rate, then the interest as well as the principal will earn interest. This is called *compound interest*. The interest is paid into the account at the end of each compounding period. > A times per year

Example 1: Suppose you invest \$1000 compounded quarterly at an annual interest rate of 8%.

How much money will you have after one year?

P= \$1000) r=0.08, t= + 4 A= 8(1400 (1+0.08(4)) = \$1020 P= \$1026, 4=0.08, t= 1 yr A= \$1020 (1+0.08(4)) = \$1020 (1.02) = \$1040.40 P= \$1040.40, r=0.08, f= 7 A = \$1040.40 (1.02)

S= \$1001.31 <u>></u> 44 Av∙ F= \$1001.31 (1.02) You

Q1: \$ 1000 (1.02) Q4: \$ 1000 (1.02)

Compound Interest:

~ \$1061.2i

$$A = P(1+i)^{n}$$

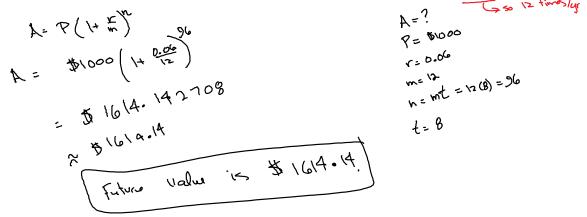
$$= P\left(1 + \frac{r}{m}\right)^{n}$$

$$= P\left(1 + \frac{r}{m}\right)^{mi}$$

t= time in years

where

 $i = \frac{r}{m}$ is the interest rate per compounding period


r = annual interest rate

m = number of compounding periods per year

 $n = \text{total number of compounding periods} (n = \sqrt{n})$

P = principal (present value)

A = amount (future value) at the end of n compounding periods.

Example 3: How much should I invest now at 4% interest compounded monthly in order to have \$10,000 in 6 years?

$$A = P(H \frac{r}{m})$$

$$A = \frac{10000}{P} = P(H \frac{0.04}{12})^{72}$$

$$7869.418714 = P$$

$$1869.418714 = P$$

$$1869.42$$

$$1869.43$$

$$4 = 6$$

Example 4: You decide to invest some money so that you will have \$1,000,000 on your 75th birthday. At 8% compounded quarterly, how much should you invest on your 25th birthday?

birthday. At 8% compounded quarterly, how much should you invest on your 25th birthday?

$$A = P(1 + \frac{r}{m})^{h}$$

$$A = \frac{1}{4} \cos 000$$

$$P = \frac{1}{4$$

Example 5: How long will it take \$5,000 to grow to \$7,000 if it is invested at 8% compounded

monthly? In
$$A = P(H = m)$$
 $A = P(H = m)$
 $A = P(H = m)$

Example 6: How long will it take money to double if it is invested at 7.5% compounded

monthly?

$$A = P(H \text{ m}) \qquad P = ? \text{ (bod we don't core what } P = ? \text{ (bod we don't$$

Continuous compound interest:

In calculus, a fundamental topic is the *limit*, or limiting value of a function. If we allow the number of compounding periods per year to increase toward infinity, the amount A approaches the limiting value $A = Pe^{rt}$. The number e is a constant, $e \approx 2.71828$. The number e is irrational—it cannot be written as a fraction of integers, or as a decimal that ends or repeats.

e can be defined as the limiting value of $\left(1+\frac{1}{x}\right)^x$ as x approaches ∞ .

Start with the compound interest formula:

$$A = P\left(1 + \frac{r}{m}\right)^{mt}$$

Substitute $x = \frac{m}{r}$ and then rearrange/simplify:

$$A = P \left[\left(1 + \frac{1}{x} \right)^x \right]^{rt}$$

As $x \to \infty$, $\left(1 + \frac{1}{x}\right)^x \to e$. This gives us the formula for continuous compound interest.

Continuous Compound Interest:

If principal P is compounded continuously at the annual interest rate r, then the amount at the end of t years is

$$A = Pe^{rt}$$
.

Example 7: How much must be invested now to have \$60,000 available in 10 years, if it is invested at 7% compounded (a) monthly? (b) continuously?

invested at 7% compounded (a) monthly? (b) continuously?

(a) monthly
$$A = P(1+P) \qquad P = P(1+P)$$

Mode:
$$l_N(e^x) = \chi$$

also $e^{l_N \chi} = \chi$

because $f(x) = e^x$ and $g(x) = l_N(\chi)$ ours inverses

3.2.5

Example 8: How long will it take \$5,000 to grow to \$7,000 if it is invested at 8% compounded continuously?

continuously?

$$A = Pe^{rt}$$
 $A = 5.000
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 7.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 9.500
 $9.$

The effective rate, sometimes called the annual percentage yield, converts a compound interest rate to an equivalent simple interest rate. This allows us to compare interest rates which have different compounding periods.

Annual Percentage Yield (APY):

The annual percentage yield (APY), or effective rate, is given by

$$APY = r_e = \left(1 + \frac{r}{m}\right)^m - 1,$$

where

r = annual interest rate

m = number of compounding periods per year.

For interest compounded continuously, the APY is

$$APY = r_e = e^r - 1$$
.

					3.2.6	
Example 9: quarterly?	What is the annual	percentage yield	for money invest	ed at 6% compou	ınded	
Example 10: 9.2% compour	Which investment	is better, Note A	at 9% compound	ed monthly or No	ote B at	