1324-BZBS14e_Notes-4-4-basic-matrix-operations

Thursday, July 11, 2019 3:36 PM
). 1324-BZBS14e_Notes-4-4-basic-matrix-operations

44.1

4.4: Matrices-Basic Operations

We will learn how to add matrices and how to multiply a matrix by a number (scalar).
Equality:

Two matrices are equal if they are the same size and all the corresponding elements are equal.

Example 1:
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Addition: Q\ = %A\‘ O # 6

Matrices can be added only if they are the same size. In this case, we add the corresponding
elements in the matrices.
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Addition of numbers is associative and commutative. Addition of matrices is associative and
commutative also.

o Commutative: A+B=B+A4

e Associative: (A+B)+C=A+(B+(C)
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A zero matrix is a matrix with zero in all positions. The following are zero matrices of different
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The negative of a matrix A, denoted —A . is the matrix with all elements that are the opposites of
the corresponding elements in the matrix A.

Example 3: ) N _3
S

Subtraction:

As with addition, subtraction can be performed only if matrices are the same size. The
difference 4—B is defined tobe A4+ ( —B) . So to subtract, we just subtract the corresponding

elements. — G¥Y
~0 g_—(—‘D -G —Cw{) - \

| O
1 2 6] [0 -2 =2 -3
[—3 4 5}[4 6 5}2 E”y'* A 5-2 -

e} -

Multiplication of a matrix by a number:

Example 4:

The product of a number & and a matrix M, denoted by &M, is the matrix formed by multiplying
each element of M by k. This is often called scalar multiplication.

Example S:
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Product of a row matrix and a column matrix (in that order):
The product of a 1xn row matrix 4 and an nx1 column matrix is the 11 matrix given by
b,
b,
AB=[a, a,-a,] [ |=[ab +ab,+-+ah].

b

"

Note: For this formula to hold, they must be in this order: row = column. If they are in the other
order (columnxrow), you get a different result. We’ll see one like this later.

Note: The number of elements in the row and column must be the same in order for the
multiplication to be defined.

Example 6:
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Matrix multiplication:

If 4 isan mxp and B is a pxn matrix, then the product of these is denoted AB and it is an
. o e
m < n matrix. b ued wnci

The entries in the matrix AB are formed as follows: the element in the ith row and jth column is
the product of the ith row of 4 with the jth column of B.

Important Note: 1f the number of columns of 4 is not equal to the number of rows of B, the
product 4B is not defined! The matrices cannot be multiplied!!

4.4 Page 3



444
Example 7:
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Example 9: d( 5
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Example 12:

4.4 Page5

445

i
\o-
\3

‘37?%@?7




coMY 4.4.6

Example 13: AD A(O
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Example 14:
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