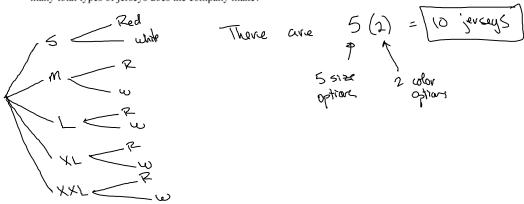


1324-BZBS14e_Notes-7-3-basic-counting-principles


7.3.1

7.3: Basic Counting Principles

Multiplication principle for counting:

This principle is used to analyze sets which are determined by a sequence of operations.

Example 1: A company sells football jerseys. The jerseys come in sizes S, M, L, XL, and XXL. They also come in two colors: red for home games and white for away games. How many total types of jerseys does the company make?

Multiplication Principle

Suppose that n choices must be made, with

 m_1 ways to make choice 1,

 m_2 ways to make choice 2,

 m_3 ways to make choice 3,

.

 m_n ways to make choice n.

Then there are $m_1 \cdot m_2 \cdot ... \cdot m_n$ ways to make the entire sequence of choices.

Example 2: How many license plate "numbers" can be formed by using a letter, followed by two digits, followed by three more letters?

$$\frac{26}{\text{Lake}} \cdot \frac{10}{\text{digit}} \cdot \frac{10}{\text{dight}} \cdot \frac{26}{\text{Lake}} \cdot \frac{26}{\text{Lake}} \cdot \frac{26}{\text{Lake}} = 10^2 \cdot 26^2 = 45 \cdot 697 \cdot 600$$
How many can be formed assuming adjacent letters and numbers must be different?

How many can be formed assuming letters and numbers cannot be repeated?

$$26 \cdot 10 \cdot 9 \cdot 25 \cdot 14 \cdot 13 = 10.9 \cdot 26.25 \cdot 24.23$$

Products like this occur so frequently that special counting formulas and notations have been developed for them. These formulas use a function called the factorial.

The Factorial:

For a natural number (positive integer) n, n! is called "n-factorial". It is defined as follows:

$$n! = n(n-1)(n-2)...(3)(2)(1)$$

 $n! = n(n-1)!$ Ex: 53! = 53.52!, = 53.52.5!!
 $0! = 1$ or def: which

Example 3:

$$6! = 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = \boxed{20}$$

$$\frac{8!}{7!} = \frac{8 \cdot 7 \cdot 6 \cdot 4 \cdot 3 \cdot 2}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2} = \frac{8 \cdot 7}{24} = \boxed{8}$$

$$\frac{97!}{3!94!} = \frac{97.96.95.94.93.92....3.2.1}{(3.2.1)94.93.92....3.2.1} = \frac{97.96.95.94!}{(3.2.1)94!} = \frac{97.96.95}{6}$$

Note: Factorials grow very rapidly!