

Note:
$$5' = \frac{1}{5'} = \frac{1}{5}$$

 $x' = \frac{1}{2}$

The inverse of a function f is denoted by f^{-1} . Read this "*f*-inverse".(The inverse of a function g is denoted by g^{-1} , etc.)

Important: The -1 is not a	in exponent. !!
So $f^{-1}(x) \neq \frac{1}{f(x)}$!!!!!	

<u>Domain and Range</u>: The range of f is the domain of f^{-1} . The domain of f is the range of f^{-1} .

When you think of inverses, think of exchanging the inputs and outputs, or "switching the x's and y's".

If the function is not one-to-one, you cannot do this!!

$$f'(x) = \frac{x}{2}$$

How to tell if function are inverses of one another:

Two functions f and g are inverses if:

1. f(g(x)) = x and 2. g(f(x)) = x

So, using our notation for *f*-inverse:

1. $f(f^{-1}(x)) = x$ and 2. $f^{-1}(f(x)) = x$

2.7.3

Example 5: Are
$$f(x) = 5x + 3$$
 and $g(x) = \frac{x - 3}{5}$ inverses?
 $f(g(x)) = f(\frac{x - 3}{5})$
 $= 5(\frac{x - 3}{5}) + 3$
 $= \chi - 3 + 3$
 $= \chi \sqrt{2}$

Example 6: Are $f(x) = \sqrt[3]{x-2}$ and $g(x) = 2-x^3$ inverses?

Functions and their inverses:

In these examples, assume the functions are 1-1. Otherwise they won't have inverse functions !!

Example 7: If
$$f(7) = 9$$
 and $f(9) = -12$, then what is $f^{-1}(9)$?

$$\frac{\chi}{1} + \frac{f(x)}{9} + \frac{\chi}{9} + \frac{f^{-1}(x)}{7} + \frac{\chi}{9} + \frac{f^{-1}(y)}{7} + \frac{\chi}{9} + \frac{f^{-1}(y)}{7} + \frac{\chi}{1} + \frac{\chi}{1}$$

Example 9: Assume that both f and f^{-1} have the set of all real numbers as their domains.

If
$$f(-4) = 7$$
 and $f(8) = 10$, find $f^{-1}(f(2))$.

$$\frac{\chi + f(-\chi)}{-4 - 7} = \frac{\chi + f^{-1}(\chi)}{7 - 1} = f^{-1}(f(2))$$

$$= f^{-1}(f(2))$$

$$= f^{-1}(\chi)$$

$$= f^{-1}(\chi)$$

$$= f^{-1}(\chi)$$

$$= f^{-1}(\chi)$$

