3.2: Polynomial Functions and Their Graphs

Definition: A polynomial function is a function which can be written in the form
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The numbers a,.a,,a,....,a, are called the coefficients of the polynomial function.

Note: The variable is only raised to positive integer powers—no negative or fractional exponents.
However, the coefficients may be any real numbers, including fractions or irrational numbers like w
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The degree of the polynomial is the largest exponent on x. (Degree is usually denoted by n.)

The leading coefficient of a polynomial is the coefficient of the term with the largest power of x.

Example2:  7(x)=2x" —9x* +7x —12 Codd wrarrqe: fNe —9x 14 12,0
Degree: 4~

Leading coefficient: —9
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Facts about polynomials:

e They are smooth curves, with no jumps or sharp points.
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® A polynomial has at most #—1 turning points.

e A polynomial has at most » x-intercepts.
e A polynomial has exactly one y-intercept.

e Every polynomial has domain (—o0,oz).

e Near the ends,

Odd-degree polynomials look like y=+x".
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Even-degree polynomials look like y = a7,

Power functions:

A power function is generally defined to be a polynomial which takes the form f(x) =ax", where n is

a positive integer. Modifications of power functions can be graphed using transformations.

Even-degree power functions: Odd-degree power functions: a,
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Note: Multiplying any function by a will multiply all the y-values by a. The general shape will stay

the same.

Example 4:  Sketch the graph of y=—(x+3)" —4.
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Zeros of polynomials:
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[f fis a polynomial and ¢ is a real number for which f(c) =0, then ¢ is'called a zero of £, or a root of

I

If ¢ is a zero of f, then

e ¢ is an x-intercept of the graph of f.

e (x—c) isa factor of f.
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So if we have a polynomial in factored form, we know all of its x-intercepts.

* every factor gives us an x-intercept.
* every x-intercept gives us a factor.

Example 5: Consider the function f(x)=3x(x-3)*(2x—1)’(x +2)*.

Zeros (x-intercepts):
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To get the degree, add the multiplicities of all the factors:
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3.2.4
Steps to graphing other polynomials:

1. Factor and find x-intercepts.
2. Mark x-intercepts on x-axis.
3. Determine the leading term.
e Degree: is it odd or even?
e Sign: is the coefficient positive or negative?

4. Determine the end behavior. What does it “look like™?
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Even Degree Even Degree Odd Degree Odd Degree
Sign (+) Sign (-) Sign (+) Sign (<)

\

5. For each x-intercept, determine the behavior.
» Even multiplicity: touches x-axis, but doesn’t cross (looks like a parabola there).

e Odd multiplicity of 1: crosses the x-axis (looks like a line there).

e Odd multiplicity >3 : crosses the x-axis and looks like a cubic there.

Note: It helps to make a table as shown in the examples below.

6. Draw the graph, being careful to make a nice smooth curve with no sharp corners.

Note: without calculus or plotting lots of points, we don't have enough information to know how high
or how low the turning points are.
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Example 6: Sketch the graph of g(x)=—(x-1)(x+3)’(x—4)*.
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Example 7:  Sketch the graph of £(x)=x"(4—x)(x +35)(x—8)".
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Example 8:
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Example 9:
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Sketch the graph of y =2(x+1)"(x+7)*(2x 7).
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Sketch the graph of P(x)=x"+3x* —4x—12.
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3.2.7
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Intermediate Value Theorem for Polynomials

Let f be a polynomial function with real coefficients. If f(a) and f(b) have opposite signs, then
there is at least one value of ¢ between @ and b for which f(c)=0.

Example 1:  Show that f(x) =3x’ —10x+9 has a real zero between —3 and 2.
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