4.1: Exponential Functions

An *exponential* function takes the form $f(x) = b^x$, where b > 0 and $b \neq 1$.

Example 1:

$$f(x) = 2^{\chi}$$

or $u_{y}(x) = 7^{\chi}$ or $h(x) = (\frac{2}{3})^{\chi}$

Why must we have b > 0 and $b \neq 1$?

The graph of $f(x) = b^x$:

Example 2: Sketch the graph of $f(x) = 2^x$ by plotting points.

4.1.1

Function

For b > 1, a larger b results in a steeper graph.

For b < 1, a smaller b results in a steeper graph.

Example 8: Sketch the graph of
$$f(x) = \left(\frac{1}{2}\right)^{x+1}$$
.

Example 9: Sketch the graph of
$$f(x) = \left(\frac{2}{3}\right)^x$$
.

4.1.6

The Number e:

We've worked with 2^x , 3^x , etc. Now we have e^x .

What is *e*? *e* is a very important number. <u>Definition</u>: *e* is the "limiting value" of $(1+\frac{1}{x})^x$ as *x* grows to infinity.

$$e \approx 2.718281828459$$

It is an irrational number, like π . This means it cannot be written as a fraction nor as a terminating or repeating decimal. Unless otherwise asked, leave *e* and π as *e* and π ! Do not approximate!

Remember: e is a number, just as 2, 3, and 17 are numbers. So it can be treated the same way.

In mathematics, it is very rare for anyone to use *e* as a variable.

<u>Believe it or not</u>: $f(x) = e^x$ is a much "nicer" function than $f(x) = 2^x$. In fact, you must change 2^x to e^{cx} (*c* a number), before you can do any calculus on it.

4.1.8