

Evaluating logarithms:

Example 2: Evaluate $\log_2 8$.

$$l_{aq_2} = 3$$

In other words, log₂ 8 is a number. What number is it

This question is asking us to find a certain exponent. Specifically, "what exponent must I put on the 2 to give me 8?"

Said another way, "2 raised to what power is 8?"

4.2.2

answer 3

Evaluating more complicated logarithms:

Remember we said e was a very important number? It is so important that the logarithmic function of base e has its own special notation and its own button on your calculator.

The logarithm of base e is called the natural logarithm, which is abbreviated "ln".

$$\log_e x = \ln x$$
 $\log_e x = \ln x$

Example 5: $\ln e^4 = 4$ This is asking $\log e^{\dagger} = 4$ $e^2 = e^{\dagger}$ ansular 4 Example 6: $\ln\left(\frac{1}{e^3}\right) = -3$ $e^2 = e^{-3}$ both and $\log e^{\dagger}$ 4 $e^2 = e^{\dagger}$ ansular 4 $\ln\left(\frac{1}{e^3}\right) = e^{-3}$ both and $\log e^{\dagger}$ 4 $\ln\left(\frac{1}{e^3}\right) = e^{-3}$ both and $\log e^{\dagger}$ 4 $\ln\left(\frac{1}{e^3}\right) = \ln\left(\frac{1}{e^3}\right) = \ln\left(\frac{$

4.2.4

Example 7: Evaluate
$$\ln \sqrt{e}$$
.

$$\ln \sqrt{e} = \ln e^{\frac{1}{2}} = \boxed{\frac{1}{2}}$$

Example 8: Simplify
$$\ln\left(\frac{1}{\sqrt[3]{e^5}}\right)$$
.
 $\int_{n} \left(\frac{1}{\sqrt[3]{e^5}}\right) = \int_{n} \left(\frac{1}{(e^5)^{5}}\right) = \int_{n} \left(\frac{1}{e^{5/5}}\right) = \int_{n} \frac{-5}{3} = \begin{bmatrix} -\frac{5}{3} \\ -\frac{5}{3} \end{bmatrix}$

Example 9: Evaluate ln1.

$$ln = \frac{7}{2}$$

$$e^{2} = 1$$

$$answer: 0 = 50$$

$$ln = 0$$

Example 10: Evaluate $\log_2(-4)$.

Example 11: Evaluate log₅0.

IMPORTANT:

You cannot apply a logarithm to zero or to a negative number!!!

Exponential and logarithmic forms for an equation:

Remember, $\log_b x = y$ means $b^y = x$.

Logarithmic form: $\log_b x = y$ Exponential form: $b^y = x$

x = y

Example 12: Convert each of the following to exponential form.

Example 13: Convert each of the following to logarithmic form.

a)
$$7^{x} = 23$$
 $\gamma^{2} = 23$
b) $y^{x-1} = 8$ $\chi^{-1} = 8$ $y^{2} = 13$
c) $x^{8} = u$ $\gamma^{8} = u$ $y^{8} = u$ $y^{9} = u$ $y^{9} = u$ $y^{9} = u$
d) $(x-3)^{2} = 6$
 $y^{2} = 4$

4.2.5

log x = y =

64 = X

More about the relationship between $f(x) = b^x$ and $g(x) = \log_b x$:

Because $f(x) = b^x$ and $g(x) = \log_b x$ are inverses of one another, f(g(x)) = x and g(f(x)) = x. This gives us...

$$\begin{bmatrix} \log_{b} b^{x} = x \\ b^{\log_{b} x} = x \end{bmatrix} \qquad \int oq_{b} b^{x} = x \\ b^{\log_{b} x} = x \end{bmatrix} \qquad \int \log_{b} b^{x} = x \\ b^{\log_{b} x} = x \end{bmatrix}$$

$$Example 14: \text{ Simplify } \log_{3} 3^{x+5} = \boxed{\chi + 5}$$

$$Example 15: \text{ Simplify } \log_{2} 2^{12} \qquad \int \log_{3} 3^{x+5} = \boxed{\chi + 5}$$

$$Example 16: \text{ Simplify } \log_{2} 2^{12} \qquad \int \log_{2} 1^{x} = \boxed{12}$$

$$Example 16: \text{ Simplify } \ln e^{-2} \qquad \int \ln e^{-2} = \log_{e} e^{-1} = \boxed{-2}$$

$$Example 17: \text{ Simplify } 5^{\log_{5} y} \qquad 5^{\log_{5} b^{x}} = \boxed{4}$$

$$Example 18: \text{ Simplify } 3^{\log_{3} \sqrt{2}} \qquad \sqrt{2} = \boxed{\sqrt{2}}$$

$$Example 19: \text{ Simplify } e^{\ln(x^{2}+1)} \qquad e^{\log_{e} (x^{2}+1)} = e^{\log_{e} (x^{2}+1)} = e^{\log_{e} (x^{2}+1)}$$

The common logarithm:

Often log is used to mean \log_{10} . The logarithm of base 10 is called the *common logarithm*.

Example 20: Evaluate $\log \sqrt[3]{10}$.

$$\log \sqrt{3} = \log_{10} \sqrt{3} = \log_{10} \sqrt{3}$$

Evaluating logs on your calculator:

Example 21: Evaluate $\log_{10} 72$ on your calculator.

$$\log_{10} 12$$
 on your calculator.
 $\log_{10} 12 = \log_{10} 12 \approx 1.85133$

Example 22: Evaluate ln12 on your calculator.

Graphs of logarithmic functions:

To get the graph of $f(x) = \log_b x$, start with the graph of $f(x) = b^x$ and reflect it about the line y = x. Why?

Example 25: Graph $y = -\ln x$.

Example 26: Graph $g(x) = \ln(x+2) - 1$.

Example 27: Graph $f(x) = -2 - \log_2(x-3)$.

Important: When graphing logarithmic and exponential functions, ALWAYS label the reference point with its coordinates. Also label the asymptote.

Example 28: Find the function of the form $y = \log_a x$ whose graph includes the point (64,3).

Finding the domain of logarithmic functions:

Example 29: Find the domain of $f(x) = \log_3(x-4)$.

Example 30: Find the domain of $f(x) = \log_5(x^2)$.

Example 31: Find the domain of $f(x) = \ln(x^2 + 6)$.

Example 32: Find the domain of $g(x) = \ln(3-2x)$.

Example 33: Find the domain of $h(x) = \ln(-x)$.

Solving simple logarithmic equations:

Example 34: Solve for *x*.

 $\log_2(x-1) = 5$

Example 35: Solve for *x*.

$$\log_x 7 = \frac{1}{2}$$