1.5: Quadratic Equations

A quadratic equation in x is one that can be written in the general form $ax^2 + bx + c = 0$, where $a \neq 0$.

Quadratic equations can be solved by:

- factoring.
- taking square roots.
- completing the square
- using the quadratic formula. ٠

Solving a quadratic equation by factoring:

Solving a quadratic equation by factoring involves the zero-product principle.

Zero-Product Principle If the product of two algebraic expressions is zero, then at least one of the factors is equal to zero. If AB = 0, then A = 0 or B = 0.

In other words, if multiplying two expressions results in 0, then at least one of them must be zero.

To solve an equation by factoring:

- 1. Move everything to one side (i.e. write in the form $ax^2 + bx + c = 0$). (write in standard 2. Factor the nonzero side.
- 3. Set each factor equal to zero.
- 4. Solve each of the resulting new equations.

<u>Example 1</u>: Solve $x^2 - 3x = 4$ by factoring.

$$\chi^{2} - 3\chi - 4 = 0$$

$$(\chi - 4)(\chi + 1) = 0$$

$$\chi - 4 = 0 \quad \text{are} \quad \chi + 1 = 0$$

$$\chi - 4 = 0 \quad \text{are} \quad \chi = -1$$

Example 2: Solve $3c^2 = 27c - 42$ by factoring.

$$3c^{2} = 21c - 41$$

$$3c^{2} = 21c - 41$$

$$3c^{2} = -3c^{2} + 11c - 42$$

$$0 = -3(c^{2} - 9c + 14)$$

$$0 = -3(c^{2} - 9c + 14)$$

$$0 = -3(c - 7)(c - 2)$$

$$(a \text{ federed})$$

$$\Rightarrow \text{ Equations and subject.}$$

Solution Set:

Romember:

1

Example 4: Solve
$$x^2 = 25x$$
.
 $\chi^2 - 25x = 0$
 $\chi(x - 25) = 0$
 $\chi = 0$ or $x - 25 = 0$
 $\chi = 25$

Example 5: Solve $12t^2 + 5t - 2 = 0$.

Example 6: Solve $18t^2 + 25t + 4 = 0$.

1.5.2

The Square Root Property

If $u^2 = d$, then $u = \sqrt{d}$ or $u = -\sqrt{d}$.

Note: If d > 0, then both solutions are positive real numbers. If d < 0, then both solutions are non-real complex numbers.

Solving a quadratic equation by using the square root property:

- 1. Write it so that one side is a perfect square.
- 2. Take square roots of both sides, remembering the \pm . Both the positive and negative square roots make the equation true.

Example 7: Solve $x^2 = 100$ by factoring. $\chi^2 - \sqrt{20} = 0$ $(\chi + \sqrt{2})(\chi - \sqrt{2}) = 0$ $\chi = -\sqrt{2}$, $\chi = \sqrt{2}$

Example 8: Solve $x^2 = 100$ by taking square roots. $\chi = \pm \sqrt{100}$ $\chi = \pm \sqrt{0}$

$$\int_{U} \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \int_{U} \frac{$$

<u>Note</u>: \sqrt{a} is the **positive** number whose square is *a*. This means that $\sqrt{5}, \sqrt{6}, \sqrt{77}$, and $\sqrt{13}$ are all positive numbers.

Thus $-\sqrt{5}$, $-\sqrt{6}$, $-\sqrt{77}$, and $-\sqrt{13}$ are all negative numbers.

3

<u>Question</u>: What is $\sqrt{9}$?

Example 9: Solve $y^2 - 17 = 0$ by using the square root property.

1.5.3

Note:
(w+3)² = 25
(w+3)² = 25 by using the square root property. If you poll a constraint
(w+3)² =
$$\pm\sqrt{95}$$

(w+3)² = $\pm\sqrt{95}$
(w+3)² = $\pm\sqrt{9$

4 (9.5

$$x^{2} = -45$$

 $x = \pm \sqrt{-45}$
 $= \pm \sqrt{45}i$
 $x = \pm i\sqrt{15}$
 $x = \pm i\sqrt{15}$
 $x = \pm i\sqrt{15}$

Solving a quadratic equation by completing the square:

To th complete the square on a quadratic equation:

- 1. Rewrite it with the constant term on the right side.
- 2. Divide both sides by the coefficient of x^2 . You should now have something in the form $x^{2} + bx = c$. 3. Add $\left(\frac{b}{2}\right)^{1}$ to both sides. This will make the left side into a perfect square.
- 4. Factor and solve by taking square roots.

Example 13: Solve $x^2 + 8x - 10 = 0$ by completing the square.

$$\chi^{2} + \beta \chi = \sqrt{2}$$

$$\chi^{2} + \beta \chi + \underline{=} 0 + \underline{-}$$

$$\chi^{2} + \beta \chi + 16 = \sqrt{2} + 16$$

$$\chi^{2} + \beta \chi + 16 = \sqrt{2} + 16$$

$$\chi^{2} + \beta \chi + 16 = \sqrt{2} + 16$$

$$(\chi + 4)^{2} = 216$$

$$(\chi + 4)^{2} = \frac{1}{\sqrt{2}6}$$

$$(\chi + 4)^{2} = \frac{1}{\sqrt{2}6}$$

$$\chi = -4 \pm \sqrt{2}6$$

$$\chi^{2} + \beta \chi + 16$$

$$(\chi + 4)(\chi + 4)$$

$$(\chi + 4)^{2}$$

$$\chi = -4 \pm \sqrt{2}6$$

$$\chi^{2} + \beta \chi + 16$$

$$\frac{M_{B} te^{2}}{\sqrt{B}} = \frac{\sqrt{A}}{\sqrt{B}} = \frac{\sqrt{A}}{\sqrt{A}} = \frac{\sqrt{$$

Example 14: Solve $3x^2 - 18x + 1 = 0$ by completing the square.

Example 17: Solve $t^2 + 3 = 5t$ using the quadratic formula.

Example 19: Solve $u^2 - 6u + 9 = 0$.

Example 20: Solve $3x^2 - 4x = -1$.

Example 21: Solve $4y^2 - 3y = 10$.

Using the discriminant to determine the number of real solutions:

The *discriminant* is the expression under the square root sign in the quadratic formula. (i.e. it=s the $b^2 - 4ac$.)

- If $b^2 4ac < 0$, the equation has <u>no real solutions</u>. There are two complex solutions, which are complex conjugates of one another.
- If $b^2 4ac > 0$, the equation has <u>two real solutions</u>.
- If $b^2 4ac = 0$, the equation has <u>exactly one real solution</u>.
- If $b^2 4ac$ is a perfect square (positive), and all the coefficients are rational, the equation has two rational solutions. (solutions are fractions or integers Bno square roots)

Example 22: Describe the solutions of $4x^2 - 3x + 10 = 0$. Solve it.

2(1)

$$b^{2} - 4ac = (-3)^{2} - 4(4)(10) \qquad b = -3$$

$$= 9 - 160 = -151. \text{ This is The } C = 10$$

$$\text{pert under the } \text{Square rast sign.}$$

$$\text{So no real solutions.} \text{ There are } 2 \text{ complex solutions.}$$

$$X = \frac{3 \pm \overline{J} - 151}{8} = \frac{3 \pm i \overline{J} \cdot 51}{8}$$

1.5.7

 $\alpha = 4$

3±:1151

Example 23: Describe the solutions of $5c^2 - 10c + 1 = 0$. Solve it.

$$\frac{1}{\sqrt{2}} - 4\alpha \hat{z} = (-\sqrt{6})^2 - 4(6)(1)$$

$$= \sqrt{66} - 20 = 80$$

$$\frac{1}{\sqrt{2}} - 4\alpha \hat{z} = (-\sqrt{6})^2 - 4(6)(1)$$

$$= \sqrt{66} - 20 = 80$$

$$\frac{1}{\sqrt{2}} - 4\alpha \hat{z} = (-\sqrt{6})^2 - 4(6)(1)$$

$$\frac{1}{\sqrt{2}} - 4\alpha \hat{z} = (-\sqrt{6})^2 - 4\alpha \hat{z} = (-$$

Example 25: Describe the solutions of $25a^2 - 30a + 9 = 0$. Solve it.

$$b^{2} - 4ac = (-30)^{2} - 4(25)(9)$$

= 900 - 90
= 0 = 1 real rational solutions

1.5.8