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3.2.1
3.2: Polynomial Functions and Their Graphs

Definition: A polynomial function is a function which can be written in the form
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The numbers a,,a,,a,.....a, are called the coefficients of the polynomial function.
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Note: The variable is only raised to positive integer powers—no negative or fractional exponents.
However, the coefficients may be any real numbers, including fractions or irrational numbers like 7

or 7+
The degree of the polynomial is the largest exponent on x. (Degree is usually denoted by n.)

The leading coefficient of a polynomial is the coefficient of the term with the largest power of x.
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Facts about polynomials:

e They are smooth curves, with no jumps or sharp points.
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s A polynomial has at most #—1 turning points.

® A polynomial has at most n x-intercepts.
* A polynomial has exactly one y-intercept.

e Every polynomial has domain (-, o).

s Near the ends.
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Odd-degree polynomials look like y = +x°. u
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Even-degree polynomials look like y = +x*.
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Power functions:

A power function is generally defined to be a polynomial which takes the form f(x) = ax". where n is

a positive integer. Modifications of power functions can be graphed using transformations.

Even-degree power functions: Odd-degree power functions:
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Note: Multiplying any function by a will multiply all the y-values by a. The general shape will stay

the same.

Example 4:  Sketch the graph of y = —(x+3)’ —4. a
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Zeros of polynomials: |

If /'is a polynomial and ¢ is a real number for which f(c)=0, then ¢ is

called a zero of f, or a reot of

. o= g
ia I - Y
- r
If ¢ is a zero of £, then <5 Lndl ’K—?'L'\-""-'-\"kﬁ ) > Lﬁ" o Y 2
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So if we have a polynomial in factored form, we know all of its x-intercepts. ERd

e every factor gives us an x-intercept,

e every x-intercept gives us a factor.

Example 5: Consider the function f(x)=3x(x-3)"(2x— 1)'“'()«' +2)°.
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Steps to graphing other polynomials:

1. Factor and find x-intercepts.
2. Mark x-intercepts on x-axis.
3. Determine the leading term.
e Degree: is it odd or even?
e Sign: is the coefficient positive or negative?

4. Determine the end behavior. What does it “look like™?

. — u

Even Degree Even Degree 0Odd Degree Odd Degree
Sign (+) Sign (-) Sign (+) Sign (-)

5. For each x-intercept, determine the behavior.
e Even multiplicity: touches x-axis, but doesn’t cross (looks like a parabola there).
e Odd multiplicity of 1: crosses the x-axis (looks like a line there).

e Odd multiplicity >3 : crosses the x-axis and looks like a cubic there.
Note: It helps to make a table as shown in the examples below.

6. Draw the graph, being careful to make a nice smooth curve with no sharp corners.

Note: without calculus or plotting lots of points, we don’t have enough information to know how high
or how low the turning points are.
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Example 6: Sketch the graph of g(x)=—(x—1)(x+3)’(x—4)*.
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Example 7:  Sketch the graph of f(x)= Y (d-x)(x+ 5)(.?—8)2,
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Example 8: Sketch the graph of y =2(x + 1)’ (x+ 7)Y (2x-7).
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Example 9;:  Sketch the graph of P(x)=x"+3x" —dx—12.
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3.2.7

Sep.

Intermediate Value Theorem for Polvnomials

Let f be a polynomial function with real coefficients. If f(a) and f(b) have opposite signs, then
there is at least one value of ¢ between « and b for which f(c)=0.

Example 1:  Show that f(x)=3x"—10x+9 has a real zero between -3 and -2.
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