3.6: Polynomial and Rational Inequalities

Polynomial and rational inequalities are examples of *nonlinear* inequalities. They cannot be solved simply by adding, subtracting, multiplying, or dividing both sides by the same quantity.

Examples:
$$\frac{x-5}{x+3} \ge 0$$
 or $x^2 - 7x + 12 > 0$

Can we do this?

$$x^{2}-7x+12 > 0$$

(x-3)(x-4) > 0
x-3>0 or x-4>0
x>3 or x>4

Does this give us the right answer?

If not, where did our logic go wrong?

To solve a polynomial or rational inequality:

- Rearrange so that one side is 0.
- If the nonzero side involves quotients, write it with a common denominator.
- If possible, factor the nonzero side. If it's a quotient, factor the numerator and factor the denominator.
- Find all the numbers that make the expression zero or undefined.
- Use these values to divide the number line into intervals.
- In each interval, choose a test number to determine whether the expression is positive or negative. It's easiest to use the factored form.
- Use this information to make a "sign chart".
- Use the sign chart to determine what values make the original inequality true.
- Write the solution in interval notation.

Example 1: Solve $9 - x^2 \le 0$.

Example 2: Solve
$$x^{2}-7x>-12$$
.
 $x^{2}-7x+1^{2} = 70$
To solut this, graph $y = x^{2}-7x+1/2$
 $y = (x-3)(x-4)$
Solution Set: (-00, 3) $V(4, 00)$
Solution Set: (-5, 1) $U(4, 4)$

3.6.2

Example 4: Solve $3x^2 - 7x < 6$.

Example 5: Solve
$$\frac{2x+6}{x-2} \ge 0$$
.

3.6.3

Example 6: Solve
$$\frac{3+x}{3-x} \ge 1$$
.

Example 7: Solve
$$\frac{1}{x-2} < \frac{2}{x+2}$$
.