1314-4-2-Notes-logarithms

Thursday, October 17, 2019 11:22 AM

<u>Definition</u>: $\log_b x = y$ means $b^y = x$. The functions $f(x) = b^x$ and $g(x) = \log_b x$ are inverses of each other. *b* is called the *base* of the logarithm. $\forall b \in b = 0$, $b \neq b$

Evaluating logarithms:

Example 2: Evaluate $\log_2 8$.

In other words, $\log_2 8$ is a number. What number is it?

This question is asking us to find a certain exponent. Specifically, "what exponent must I put on the 2 to give me 8?"

Joy 8 = -!

Ξ

- 7

CASULT'

log_g

4.2.2

becau

Said another way, "2 raised to what power is 8?"

Examples: $\log_{3} 32 = \frac{5}{2} = 32$ $\log_{3} (\sqrt{5}) = \frac{1}{4}$ $\log_{3} (\sqrt{5}) = \frac{1}{4}$ $\log_{3} (\sqrt{5}) = \frac{1}{4}$ $\int_{1}^{2} = 32$ $\int_{1}^{2} = \sqrt{5}$ $\int_{1}^{2} = \sqrt{5$

Remember we said e was a very important number? It is so important that the logarithmic function of base e has its own special notation and its own button on your calculator.

The logarithm of base e is called the natural logarithm, which is abbreviated "ln".

$$log_{e} x = ln x$$

$$log_{e} (\chi) = ln (\chi)$$
Example 5: $lne^{4} = 4$ means $log_{e} e^{4} = 4$ Recall $log_{1} lle = -$

$$e^{7} = e^{4} ansuer: 4$$

$$\frac{1}{e^{3}} = -3$$

$$log_{e} (\frac{1}{e^{3}}) = -3$$

$$log_{e} (\frac{1}{e^{3}}) = -3$$

$$e^{7} = \frac{1}{e^{3}}$$
Notion $e^{7} = \frac{1}{e^{3}} = -3$

Example 7: Evaluate
$$\ln \sqrt{e}$$
. $\ln \sqrt{e} = \frac{1}{2}$ 42.4
Row N: $\log_{e} \sqrt{e} = \frac{1}{\sqrt{e}}$ $(\log_{e} \sqrt{e})^{2} = \sqrt{e}$ $(\log_{e}$

Exponential and logarithmic forms for an equation:

Remember, $\log_b x = y$ means $b^y = x$.

Logarithmic form:	$\log_b x = y$
Exponential form:	$b^{\nu} = x$

Example 12: Convert each of the following to exponential form.

Example 13: Convert each of the following to logarithmic form.

a)
$$7^{x} = 23$$

b) $y^{x-1} = 8$
log₁(23) = χ
log₂(23) = χ
log₂(23) = χ
log₂(23) = χ
log₂(23) = χ

Check:
$$\log_1 LS = \chi - 1 = 7 y^{1-1} = 8$$

Check $\log_y \theta = \chi - 1 = 7 y^{1-1} = 8$

d) $(x-3)^2 = 6$

More about the relationship between $f(x) = b^x$ and $g(x) = \log_b x$:

Because $f(x) = b^x$ and $g(x) = \log_b x$ are inverses of one another, f(g(x)) = x and g(f(x)) = x.

This gives us...

$$\log_b b^x = x
 b^{\log_b x} = x
 b^{\log_b (\mathcal{K})} = \checkmark$$

Example 14: Simplify $\log_3 3^{x+5}$. $\log_3 3^{x+5} = \chi + 5$ Example 15: Simplify $\log_2 2^{12}$. $\log_2 2^{12} = \log_2 (1^{2}) = \log_2 (1)^{12} = 12$ Example 16: Simplify $\ln e^{-2}$. $\ln e^{-2} = \log_2 e^{-2} = -2$ Example 17: Simplify $5^{\log_5 y}$. $5^{\log_5 y} = -4$ Example 18: Simplify $3^{\log_5 \sqrt{2}}$. $3^{\log_3 (\sqrt{2})} = \sqrt{2}$ Example 19: Simplify $e^{\ln(x^2+1)}$. $e^{\ln(y^2+1)} = e^{\log_2 (x^2+1)} = \sqrt{2}$

The common logarithm:

Often log is used to mean log₁₀. The logarithm of base 10 is called the *common logarithm*.

Example 20: Evaluate $\log \sqrt[3]{10}$.

For our context,

Q

$$\int \frac{1}{|\xi|} = \int \log_{\omega} \frac{1}{|\xi|} = \int \frac{1}{|\xi|} = \int \frac{1}{|\xi|}$$

Important: When graphing logarithmic and exponential functions, ALWAYS label the reference point with its coordinates. Also label the asymptote.

Example 28: Find the function of the form $y = \log_a x$ whose graph includes the point (64,3).

Finding the domain of logarithmic functions:

Example 29: Find the domain of $f(x) = \log_3(x-4)$.

Example 30: Find the domain of $f(x) = \log_5(x^2)$.

Example 31: Find the domain of $f(x) = \ln(x^2 + 6)$.

Example 32: Find the domain of $g(x) = \ln(3-2x)$.

Example 33: Find the domain of $h(x) = \ln(-x)$.

Solving simple logarithmic equations:

Example 34: Solve for *x*.

 $\log_2(x-1) = 5$

Example 35: Solve for x.

 $\log_x 7 = \frac{1}{2}$