1314-4-3-Notes-log-props

Thursday, October 17, 2019 11:22 AM

4.3: Properties of Logarithms

Laws (properties, rules) of logarithms:

1.
$$\log_{a} b = 1$$

 $\log_{b} b = 1$
 $\log_{b} b = 1$
2. $\log_{b} 1 = 0$
 $\int_{0}^{7} = 1$
3. $\log_{b} (PQ) = \log_{b} P + \log_{b} Q$
4. $\log_{b} \left(\frac{P}{Q}\right) = \log_{b} P - \log_{b} Q$
Note: this results in $\log_{b} \left(\frac{1}{Q}\right) = -\log_{b} Q$.
5. $\log_{b} P^{a} = n \log_{b} P$
6. $b^{\log_{b} P} = P$
7. $\log_{b} b^{P} = P$
8. $\log_{a} x = \frac{\log_{b} x}{\log_{b} a}$ (Change of base formula)
Note: this results in $\log_{a} x = \frac{\ln x}{\ln a}$.
Example 1: Simplify $\log_{2} 56 - \log_{2} 7$.
 $\int_{0}^{7} \log_{2} C - \int_{0} \log_{2} 1 = \int_{0}^{7} \log_{2} C = \int_{0} \log_{2} 2^{3} = \left[\frac{3}{2}\right]$
Example 2: Simplify $\log_{a} 4 + \log_{a} 9$.
 $\int_{0}^{7} \log_{b} 4 + \log_{a} 9 = \int_{0}^{7} \log_{b} C + \int_{0}^{7} \log_$

Example 3: Simplify $\log 50 - \log 2 + \log 4$.

Example 4: Simplify $\log_2 8^{10}$.

Example 5: Simplify
$$5^{2\log_5 3}$$
. $5^{2\log_5 3} = 5^{\log_5 3} = -3^2 = 9$

Example 7: Simplify $\log_6\left(\frac{\sqrt[3]{x}}{36}\right)$.

Errors to avoid: $\log_{a} (x + y) \neq \log_{a} x + \log_{a} y$ $\frac{\log_{a} x}{\log_{a} y} \neq \log_{a} x - \log_{a} y$ $(\log_{a} x)^{3} \neq 3 \log_{a} x$

Putting the properties together:

Example 8: Use the properties of logarithms to expand the expression as much as possible.

$$\log_3(x(x+4)) \qquad \log_3(x(x+4)) = \log_3(x) + \log_3(x+4) + \log_3(x+4)$$

Example 9: Use the properties of logarithms to expand the expression as much as possible.

$$\ln\left(\frac{x+2}{e}\right) = \left[\ln\left(x+2\right) - \ln\left(e\right)\right] \leftarrow \operatorname{Prop}(4)$$

Example 10: Use the properties of logarithms to expand the expression as much as possible. 2

$$\ln\left(\frac{ab^{3}}{c^{2}d}\right) = \ln\left(\frac{ab^{2}}{c^{2}d}\right) = \ln(ab^{3}) - \ln(c^{2}d) \iff \operatorname{Prop}^{4}$$

$$= \left(\ln a + \ln b^{3}\right) - \left(\ln c^{2} + \ln d\right)$$

$$= \ln a + \ln b^{3} - \ln c^{2} - \ln d$$

$$= \left(\ln a + 3\ln b - 2\ln c - \ln d\right)$$

Example 11: Use the properties of logarithms to expand the expression as much as possible.

$$\ln\left[\frac{x+5}{x^2-4}\right] = \ln(x+5) - \ln(x^2-4)$$

= $\ln(x+5) - \ln((x+2)(x-2))$
= $\ln(x+6) - \left[\ln(x+2) + \ln(x-2)\right]$
= $\ln(x+5) - \ln(x+2) - \ln(x-2)$

Example 12: Use the properties of logarithms to expand the expression as much as possible.

$$\log_{10}\left[\frac{x+1}{x^{2}(x-3)\sqrt{x+7}}\right] = \log_{10}\left[\frac{x+1}{\sqrt{2}(x-3)(x+7)^{1/2}}\right]$$

= $\log_{10}\left(\frac{x+1}{x^{2}(x-3)(x+7)} - \log_{10}(x^{2}) - \log_{10}(x-3) - \log_{10}(x+7)^{1/2}\right]$
= $\log_{10}\left(\frac{x+1}{x+1}\right) - 2\log_{10}x - \log_{10}(x-3) - \frac{1}{2}\log_{10}(x+7)$

Example 13: Use the properties of logarithms to expand the expression as much as possible.

$$\ln\sqrt{\frac{(x-3)^2(x+9)^4}{x^6(x-10)}}$$

4.3.3

Example 14: Rewrite as a single logarithm with a coefficient of 1.

$$\log_3 x + \log_3 2 = \log_3 (2\pi)$$

Example 15: Rewrite as a single logarithm with a coefficient of 1.

$$\log_{a} b - c \log_{a} d + r \log_{a} s$$

$$= \log_{a} b - \log_{a} d + \log_{a} s$$

$$= \left(\log_{a} b + \log_{a} d\right) - \log_{a} d^{2}$$

$$= \log_{a} \left(\log_{a} b + \log_{a} d\right) - \log_{a} d^{2}$$

+

Rewrite as a single logarithm with a coefficient of 1. $2 \ln x - 5 \ln(x+1) - \frac{1}{2} \ln(x-3)$

$$= \ln x^{2} - \ln(x+1)^{5} - \ln(x-3)^{1/2}$$

$$= \ln x^{2} - \left[\ln(x+1)^{5} + \ln(x-3)^{1/2}\right]$$

$$= \ln x^{2} - \left[\ln(x+1)^{5}(x-3)^{1/2}\right] = \left[\ln\left[\frac{x^{2}}{(x+1)^{5}(x-3)}\right] = \left[\ln\left[\frac{x^{2}}{(x+1)^{5}(x-3)}\right]\right]$$

Rewrite as a single logarithm with a coefficient of 1.

$$\frac{1}{2}[3\log_5(x+2) - 2\log_5(x-1) + \log_5 x - 4\log_5(x-7)]$$

Example 16: Rewrite ln 60 so that it contains only logs that are being applied to prime numbers.

$$\int u(\omega) = \int u(2^{2} \cdot 5 \cdot 3) = \int u(2^{2} + Ju)^{2} + Ju(5 + Ju)^{3}$$

$$= 2Ju(2 + Ju)^{2} + Ju(3 + Ju)^{3}$$

$$= 2Ju(2 + Ju)^{2} + Ju^{3}$$

Example 17: Rewrite log 72 so that it contains only logs that are being applied to prime numbers.

Example 18: Use a calculator to approximate
$$\log_2 17$$
 to the nearest hundredth.
 $\log_{\alpha} \chi = \frac{\log_{\alpha} \chi}{\log_{\alpha} \alpha}$
 $\log_{\alpha} \chi = \frac{\log_{\alpha} \chi}{\log_{\alpha} \chi}$
 $\log_{\alpha} \chi = \frac{\log_{\alpha} \chi}{\log_{\alpha} \chi}$

۱

Example 19: Use a calculator to evaluate $\log_7 12$ to the nearest thousandth.

About calculators and books:

$$\frac{\text{Notion:}}{\text{In}} \stackrel{\text{In}}{=} \frac{\text{In}}{\text{In}} \stackrel{\text{In}}{=} \frac{\text{In}}{\text{In}} - \frac{\text{In}}{\text{In}}$$

$$\frac{\text{In}}{\text{In}} \stackrel{\text{In}}{=} \frac{\text{In}}{\text{In}} - \frac{\text{In}}{\text{In}}$$

$$\frac{\text{In}}{\text{In}} \stackrel{\text{In}}{=} \frac{\text{In}}{\text{In}} \stackrel{\text{In}}{=} \frac{\text{In}}{\text{In}} - \frac{\text{In}}{\text{In}}$$

$$\frac{\text{In}}{\text{In}} \stackrel{\text{In}}{=} \frac{\text{In}}{\text{In}} \stackrel{\text{In}} \stackrel{$$

- Most calculators and some books (including ours) use
 - \circ In for natural log (base *e*).
 - \circ log for \log_{10} .
- Some math books (usually very advanced ones or those from other countries)
 - \circ use log for natural log.
 - o That's all. Logs of other bases are useless.
- Some books (this is my preference)
 - \circ use ln for natural log.
 - $\circ \quad \text{use } \log_{10} \ \text{for } \log_{10}.$
 - o never write log by itself (too confusing!!)