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6.1.1

6.1: Random Variables

A random variable is :{quantitative v;riablellhal represents the outcomes of a probability

experiment. Thus, the value of a random variable depends on chance.

A discrete random variable is a random variable that takes on a finite or countably infinite
number of values.

A continuous random variable is a random variable that takes on all values on an interval of the
real number line (i.e., it is not countable).

A discrete probability distribution is a function that assigns a probability to each outcome. (So, it
assigns a probability to each value of the discrete random variable). If there are a finite number
of outcomes, the sum of all their probabilities must equal 1. Each probability must be between 0
and 1, inclusive. The probability distribution can be described by a table, graph, or mathematical
formula.

Notation:

If X is a random variable, then the probability of X taking on the value x is denoted P(X =x).
For example, the probability of X taking on the value 3 is P(Y =3). The probability of X taking
on a values of at least 5 is denoted P(X =35).

Example 1: A probability distribution is given by the table below.

X 12 13 14 15 16 17 18
P(X=x) | 032 0.18 0.13 0.11 0.10 0.08 0.08
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6.1.2

Example 2: A car repair shop’s records show that 25 clients have 6 cars, 83 clients have 5
cars, 140 clients have 4 cars, 183 clients have 3 cars, and 209 clients have 2 cars. The remaining
313 clients own only 1 car. Determine the probability distribution for the number of cars owned
by the shop’s clients. Construct a probability histogram. If the manager decides to randomly call
a customer and invite him or her to complete a satisfaction survey, what is the probability that
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6.1.3

Example 3: Create a probability distribution to represent the number of girls in a three-child
family. Assume that boys and girls are equally likely. Construct the probability histogram. What
is the probability that a three-child family has exactly one girl? What is the probability that a
three-child family has at least one girl?

g = {v,a\%) BEh B D, BEG, C-EB) (RG, GCB, QQ\@:&
w3 CLan \Aﬁqu_ ‘A o 2-;\:.00’ 'Fn-m.\s)

( m\r.n-uﬂﬁ

g )
%< T WEERS L==C-h'.?J

Goe— & .
NG puliphotion Wnpls:
3 Nwa am  X0= 8 {)nsf;\a\'i‘..s
s T on eb-um& Q-\VJ\:\ S*""‘(*Qh S,
\,ﬂ:\- \I\:. V\u.vAalv L‘F tﬁxﬂk;
Do)z Pl R ¥ D

—

-

ce |-

2

8 -

|

Mean of a discrete random variable:

The Mean (Expected value) of a Discrete Random Variable:

Suppose that a random variable X can take on the » values x,,x,....,x, . Suppose the

associated probabilities are p,. p,..... p, . Then the mean of X is
H=XP + XDy +.+ X, P,

Suppose an experiment is repeated many times, and the values of X are recorded and then
averaged. As the number of repetitions increases, the average value of X will become closer
and closer to g . For that reason, the mean is called the expected value of X.
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Example 4: A probability distribution is given by the table below. Find the mean (the
expected value of X).

X 3 4 5 6 7 8 9
P(X=x)|0.15 0.20 0.30 0.12 0.08 0.10 0.05
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Example 5:  Suppose that an organization sells 1000 raffle tickets for $1 each. One ticket is for
a gift basket worth $200, and three tickets are for $50 gift certificates to a restaurant. Find the
expected net winnings for a person who buys one ticket.
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Example 6: Suppose the yearly premium for a car insurance policy is $2300 for a customer in
a certain category. Statisticians for the insurance company have determined that a person in this
category has a 0.007 probability of having an accident that costs the insurance company
$100,000 and a 0.015 probability of having an accident that costs the insurance company
$30.000. What is the expected value of the insurance policy to the customer? To the insurance
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6.1.5

Standard deviation of a discrete random variable:

The Standard Deviation of a Discrete Random Variable:

Suppose that a random variable X can take on the n values x,x,,....x,. Suppose the
associated probabilities are p,, p,,..., p, . Then the mean of X is

o= \/(.\‘, —u1Y p (=) py ot (x, - ) p,

= \j'i(-n —1)'p,

Example 7: Calculate the mean and standard deviation of the probability distribution.

x P(X =x) [sometimes written P(x)]
0 0.11
1 0.32
2 0.43
3 0.10
4 0.04
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6.1.6

Example 8: Use the frequencies to construct a probability distribution for the random variable
X, which represents the number of games bowled by customers at a bowling alley. Calculate the

mean and standard deviation of X

Number of Games Frequency
1 37
2 45
3 29
4 12
5 4
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