1342-Notes_Navidi_Set-Theory-supplement

Wednesday, October 2, 2019 9:25 AM

Supplement: Basic Set Theory

<u>Definition</u>: A set is a well-defined collection of objects. Each object in a set is called an *element* of that set.

Sets can be finite or infinite.

Notation:

- We usually use capital letters for sets. We usually use lower-case letters for elements of a set.
- $a \in A$ means a is an element of the set A. $a \notin A$ $a \notin A$ means a is not an element of the set A. $a \notin A$
- The *empty set* is the set with no elements. It is denoted \emptyset . This is sometimes called the *null set*.
- $S = \{x \mid P(x)\}$ means "S is the set of all x such that P(x) is true". (called rule notation or set roster notation). $S = \{(x,y) \mid x \leq y\}$

Example: $S = \{x \mid x \text{ is an even positive integer}\}$ means $S = \{2, 4, 6, 8, ...\}$

• n(A) means the number of elements in set A.

Definition: We say two sets are equal if they have exactly the same elements.

Ο

ιc

1

Subsets:

Definition: If each element of a set A is also an element of set B, we say that A is a subset of B. This is denoted $A \subseteq B$ or $A \subset B$. If A is not a subset of B, we write $A \not\subset B$. ACB or ACB

<u>Definition</u>: We say A is a proper subset of B if $A \subseteq B$ but $A \neq B$. (In other words, every element of A is also an element of B, but B contains at least one element that is not in A.)

<u>Note on notation</u>: Some books use the symbol \subset to indicate a proper subset. Some books use \subset to indicate any subset, proper or not.

Definition: The set of all elements under consideration is called the *universal set*, usually denoted U. Example: If you're dealing with sets of real numbers, then U is the set of all real numbers. So "Wednesday" would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets.

$A = \{1, 2, 3, 4, 5, 6\}$	$A \subseteq B$
$B = \{1, 2, 3, 4, 5, 6, 7, 8\}$	CEB
$C = \{1, 3, 5, 2, 4, 6\}$	A = C

Note:

- \emptyset is a subset of every set. (i.e. $\emptyset \subseteq A$ for every set A.)
- Every set is a subset of itself. (i.e. $A \subseteq A$ for every set A.)

Example 2:List all subsets of
$$\{1, 2, 3\}$$
. N_{0} N_{0} N_{0} $\{1, 2, 3\}, \{1,$

Note: If a set has *n* elements, how many subsets does it have?

Set operations:

Union ∪: A ∪ B = {x | x ∈ A or x ∈ B} key word: OP (this is an inclusive or ... could be in A or B or possibly both)
Intersection ∩ : A ∩ B = {x | x ∈ A and x ∈ B}

Key word: ANT?

• Complement A' or A^C or $A' : A' = \{x \in U \mid x \notin A\}$.

 $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$. <u>Definition</u>: We say that A and B are *disjoint sets* if $A \cap B = \emptyset$. (or mutually exclusion } **Example 3:** $U = \{7, 8, 9, 10, 11, 12, 13, 14, 15\} = units a set$ $H = \{7, 9, 11, 13, 15\}$ JNK= {10,123 $K = \{10, 11, 12\}$ $L = \{9, 14\}$ $HUJ = \{7, 8, 9, 10, 11, 12, 13, 14, 15\} = U$ n = {0,"} LUJ= {8,9,10,12,143 $HU2 = \phi$ LNJ= {1+3 $m \leq K$ $m \cup K = \{10, 11, 12\}$ $m \cap K = \{10, 11\}$ $K^{c} = \{1, 8, 9, 13, 14, 15\}$ $\overrightarrow{}$ $(\lfloor u J)' = \{7, 11, 13, 15\}$ Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for $A \cup B$, $A \cap B$, A^{C} , B^{C} , $(A \cap B)^{C}$, and $(A \cup B)^{C}$.

Note: $A \subseteq (A \cup B)$ and $B \subseteq (A \cup B)$.

Sets.3