Supplement: Basic Set Theory

Definition: A set is a well-defined collection of objects. Each object in a set is called an *element* of that set.

Examples of sets:

Not sets:

Sets can be finite or infinite.

Examples of finite sets:

Examples of infinite sets:

Notation:

- We usually use capital letters for sets. We usually use lower-case letters for elements of a set.
- $a \in A$ means a is an element of the set A. $a \notin A$ means a is not an element of the set A.
- The *empty set* is the set with no elements. It is denoted \emptyset . This is sometimes called the *null set*.
- $S = \{x | P(x)\}$ means "S is the set of all x such that P(x) is true". (called rule notation or set roster notation).

Example: $S = \{x \mid x \text{ is an even positive integer}\}$ means $S = \{2, 4, 6, 8, ...\}$

• n(A) means the number of elements in set A.

<u>Definition</u>: We say two sets are *equal* if they have exactly the same elements.

Subsets:

<u>Definition</u>: If each element of a set *A* is also an element of set *B*, we say that *A* is a *subset* of *B*. This is denoted $A \subseteq B$ or $A \subset B$. If *A* is not a subset of *B*, we write $A \not\subset B$.

<u>Definition</u>: We say *A* is a *proper subset* of *B* if $A \subseteq B$ but $A \neq B$. (In other words, every element of *A* is also an element of *B*, but *B* contains at least one element that is not in *A*.)

<u>Note on notation</u>: Some books use the symbol \subset to indicate a proper subset. Some books use \subset to indicate any subset, proper or not.

<u>Definition</u>: The set of all elements under consideration is called the *universal set*, usually denoted U. Example: If you're dealing with sets of real numbers, then U is the set of all real numbers. So "Wednesday" would not be an element of U, but 5.7 would be in U.

Example 1: Consider these sets.

$$A = \{1, 2, 3, 4, 5, 6\}$$
$$B = \{1, 2, 3, 4, 5, 6, 7, 8\}$$
$$C = \{1, 3, 5, 2, 4, 6\}$$

Note:

- \emptyset is a subset of every set. (i.e. $\emptyset \subseteq A$ for every set A.)
- Every set is a subset of itself. (i.e. $A \subseteq A$ for every set A.)

Example 2: List all subsets of $\{1, 2, 3\}$.

Note: If a set has *n* elements, how many subsets does it have?

Set operations:

- Union \cup : $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- Intersection \cap : $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
- Complement A' or A^{C} or A^{\Box} : $A' = \{x \in U \mid x \notin A\}$.

Note: $A \subseteq (A \cup B)$ and $B \subseteq (A \cup B)$. $(A \cap B) \subseteq A$ and $(A \cap B) \subseteq B$.

<u>Definition</u>: We say that A and B are *disjoint sets* if $A \cap B = \emptyset$.

Example 3: $U = \{7, 8, 9, 10, 11, 12, 13, 14, 15\}$ $H = \{7, 9, 11, 13, 15\}$ $K = \{10, 11, 12\}$ $J = \{8, 10, 12, 14\}$ $L = \{9, 14\}$

Venn Diagrams: These help us visualize set relationships and operations.

Example 4: Draw Venn diagrams for $A \cup B$, $A \cap B$, A^{C} , B^{C} , $(A \cap B)^{C}$, and $(A \cup B)^{C}$.