Name_

Date

Solve the equation.

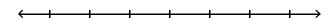
1)
$$(y - 4) - (y + 5) = 5y$$

2)
$$13(8c - 7) = 8c - 9$$

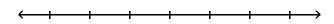
3)
$$3(2z - 4) = 5(z + 5)$$

4)
$$2x + 3(-2x - 5) = -16 - 3x$$

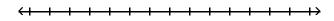
5)
$$\frac{2x}{5} - \frac{x}{3} = 2$$

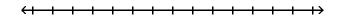

6)
$$\frac{17}{14}x + \frac{2}{7} = \frac{8}{7}x$$

7)
$$\frac{4(7-x)}{3} = x$$


8)
$$\frac{3(y-2)}{5} = 1 - 3y$$

Solve the inequality. Graph the solution set and write it in interval notation.


9) $-24x + 8 \le -4(5x - 11)$


10) $25x + 5 \le 5(4x + 5)$

11) $-32 \le -5x + 3 \le -12$

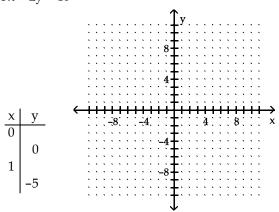
12) $4 \le 2(x - 5) \le 8$

Solve.

13) The owners of a candy store want to sell, for \$6 per pound, a mixture of chocolate-covered raisins, which usually sells for \$3 per pound, and chocolate-covered macadamia nuts, which usually sells for \$8 per pound. They have a 40-pound barrel of the raisins. How many pounds of the nuts should they mix with the barrel of raisins so that they hit their target value of \$6 per pound for the mixture?

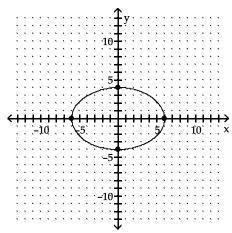
- 14) A chemist needs 100 milliliters of a 67% solution but has only 55% and 85% solutions available. Find how many milliliters of each that should be mixed to get the desired solution.
- 15) How can \$56,000 be invested, part at 4% annual simple interest and the remainder at 10% annual simple interest, so that the interest earned by the two accounts is equal at the end of the year?
- 16) Melissa invested a sum of money at 3% annual simple interest. She invested three times that sum at 5% annual simple interest. If her total yearly interest from both investments was \$3600, how much was invested at 3%?
- 17) Linda and Dave leave simultaneously from the same starting point biking in opposite directions. Linda bikes at 5 miles per hour and Dave bikes at 9 miles per hour. How long will it be until they are 23 miles apart from each other?
- 18) Jeff starts driving at 55 miles per hour from the same point that Lauren starts driving at 50 miles per hour. They drive in opposite directions, and Lauren has a half-hour head start. How long will they be able to talk on their cell phones that have a 400-mile range?
- 19) Eight less than three times a number is less than ten. Find all such numbers.
- 20) Three-fourths a number decreased by one is between negative five and sixteen. Find all such numbers.

Determine whether the equation is a linear equation in two variables.

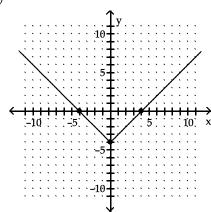

- 21) x = 3
- 22) $3x^2 = 7y 6$

Complete the ordered pair so that it is a solution of the given linear equation.

23)
$$8x + y = -52$$
; $(-7,), (0,), (1,)$

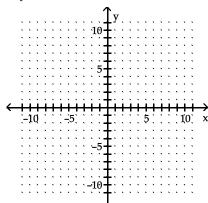

Complete the table of ordered pairs for the given linear equation; then plot the solution.

24)
$$5x + 2y = 10$$

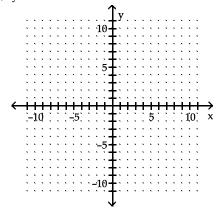


Identify the intercepts.

25)

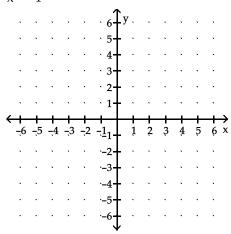


26)



Graph the linear equation by finding x- and y- intercepts.

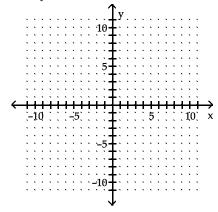
27)
$$15y - 5x = -10$$



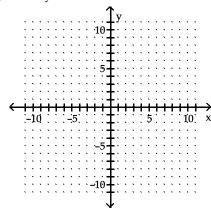
28) y = 5x

Graph the linear equation.

29) x = -4



30) y - 2 = 0



Use the slope-intercept form to graph the equation.

31)
$$6x + y = 0$$

32)
$$2x + 5y = 10$$

Evaluate the expression with the given replacement values.

33)
$$-3x^3y$$
; $x = 2$ and $y = -5$

34)
$$\frac{8}{3x^2}$$
; $x = -3$

Use the product rule to simplify. Write the results using exponents.

35)
$$g^9 \cdot g^5 \cdot g^8$$

36)
$$(7x)(4x^5)(x^3)$$

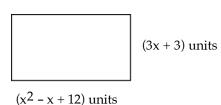
Use the quotient rule to simplify the expression.

$$37) \ \frac{40m^{16}n^9}{5m^{15}n^7}$$

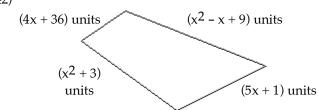
Simplify the following.

38)
$$-8y^0$$

Simplify the expression. Write the result using positive exponents only.


5

39)
$$\frac{(4x^2)^3}{x^{15}}$$


40)
$$(-5x^3y^{-4})(3x^{-1}y)$$

Find the perimeter.

41)

42)

Perform the indicated operations.

43)
$$(6x^5 + 2x^4 - 7x^3 + 6) - (4x^5 - 4x^4 - 5x^3 - 5)$$

44)
$$(-7x^4 + 9x^6 - 8 + 9x^5) - (-5 + 5x^5 + 2x^6 + 9x^4)$$

Find the following product.

45)
$$(3z + 11)^2$$

46)
$$(x + 1)(x^2 - x + 1)$$

Perform the division.

47)
$$\frac{x^2 + 7x + 3}{x + 5}$$

48)
$$\frac{8x^3 - 28x^2 + 14x + 19}{2x - 5}$$

Factor out the GCF from the polynomial.

50)
$$21x^3y + 15xy^6$$

Factor by grouping.

51)
$$xy + 11x - 5y - 55$$

52)
$$4xy - 16x + 7y - 28$$

Factor the polynomial completely. If the polynomial cannot be factored, write prime.

53)
$$x^3 - x^2 - 30x$$

54)
$$5x^6 + 60x^5 + 175x^4$$

55)
$$x^2 - 16xy + 64y^2$$

56)
$$64x^2 + 80xy + 25y^2$$

57)
$$r^{20} - a^2$$

58)
$$x^4 - 625$$

59)
$$t^3 + 1000$$

60)
$$750x^3 - 162x^6$$

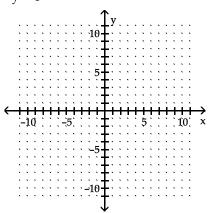
Solve the equation.

61)
$$(5y + 29)(2y + 11) = 0$$

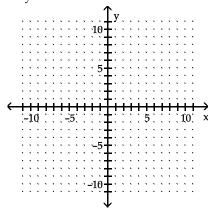
62)
$$b(b + 18) = 0$$

63)
$$49x^2 - 3 = 14x$$

64)
$$(x + 8)(x + 1) = 44$$


Without graphing, determine whether the system has one solution, no solution, or an infinite number of solutions.

 $\int 2x + y = 2$


66)
$$\begin{cases} x + 6y = 24 \\ y = -\frac{1}{6}x + 4 \end{cases}$$

Solve the system of equations by graphing the equations on the same set of axes.

67)
$$\begin{cases} x + y = 1 \\ x - y = 5 \end{cases}$$

$$\begin{cases} x + 2y = 5 \\ 3x - 2y = -9 \end{cases}$$

Solve the system of equations by the substitution method.

69)
$$\begin{cases} 3x + y = 15 \\ 12x + 4y = 60 \end{cases}$$

70)
$$\begin{cases} -5x - 20y = 10 \\ 6x + 24y = 0 \end{cases}$$

Solve the system of equations by the addition method.

71)
$$\begin{cases} 3x - 5y = 7 \\ 6x - 10y = 28 \end{cases}$$

72)
$$\begin{cases} -6x - 6y = -4 \\ 12x + 12y = 8 \end{cases}$$

Simplify the rational expression.

73)
$$\frac{2x-8}{12-3x}$$

74)
$$\frac{4-x}{6x-24}$$

Perform the indicated operation. Simplify if possible. 75)
$$\frac{2x}{x^2 - 7x + 12} - \frac{8}{x^2 - 7x + 12}$$

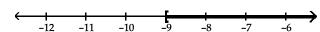
76)
$$\frac{10x+3}{x^2+10x+16} - \frac{9x-5}{x^2+10x+16}$$

Divide. Simplify if possible.

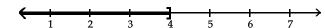
77)
$$\frac{x-1}{-7-x} \div \frac{x^2-4x-5}{x^2+8x+7}$$

78)
$$(x+2) \div \frac{x^2 - 10x + 16}{8 - x}$$

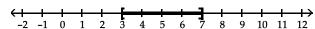
Find all numbers for which the rational function is defined.

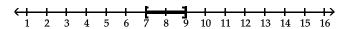

79)
$$f(w) = \frac{w^2 - 25w}{5w}$$

80)
$$f(x) = \frac{2x}{-3 + x}$$

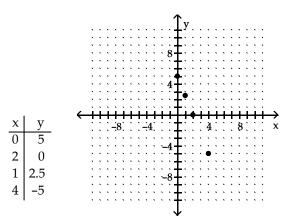

Answer Key

Testname: DEPARTMENTAL FINAL REVIEW 0308

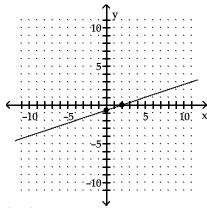

- 1) $-\frac{9}{5}$
- 2) $\frac{41}{48}$
- 3) 37
- 4) 1
- 5) 30
- 6) -4
- 7) 4
- 8) $\frac{11}{18}$
- 9) [-9, ∞)


10) $(-\infty, 4]$

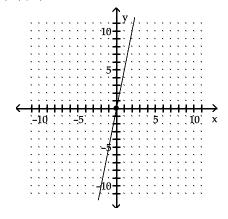
11) [3,7]

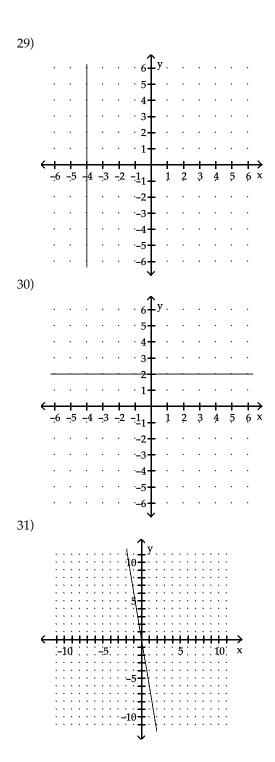


12) [7,9]



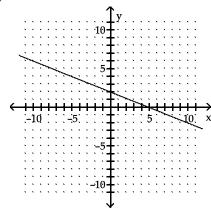
- 13) 60 lbs
- 14) 60 ml of 55%; 40 ml of 85%
- 15) \$40,000 invested at 4%; \$16,000 invested at 10%
- 16) \$20,000
- 17) $1\frac{9}{14}$ hrs
- 18) $3\frac{4}{7}$ hrs
- 19) x < 6
- $20) \frac{16}{3} < x < \frac{68}{3}$
- 21) yes
- 22) no
- 23) (-7, 4) (0, -52) (1, -60)


24)



- 25) (6, 0), (-6, 0), (0, 4), (0, -4) 26) (4, 0), (-4, 0), (0, -4)
- 27) $(0, -\frac{2}{3}), (2, 0)$

28) (0, 0)



Answer Key

Testname: DEPARTMENTAL FINAL REVIEW 0308

- 33) 120
- 34) $\frac{8}{27}$
- 35) g²²
- 36) 28x⁹
- 37) 8mn²
- 38) -8
- 39) $\frac{64}{x^9}$

40)
$$\frac{-15x^2}{y^3}$$

- 41) $(2x^2 + 4x + 30)$ units
- 42) $(2x^2 + 8x + 49)$ units
- 43) $2x^5 + 6x^4 2x^3 + 11$
- 44) $7x^6 + 4x^5 16x^4 3$
- 45) $9z^2 + 66z + 121$
- 46) $x^3 + 1$
- 47) $x + 2 \frac{7}{x+5}$

48)
$$4x^2 - 4x - 3 + \frac{4}{2x - 5}$$

- 49) 8(6x 1)
- 50) $3xy(7x^2 + 5y^5)$
- 51) (y + 11)(x 5)
- 52) (4x + 7)(y 4)
- 53) x(x+5)(x-6)
- 54) $5x^4(x+7)(x+5)$
- 55) $(x 8y)^2$
- 56) $(8x + 5y)^2$
- 57) $(r^{10} + a)(r^{10} a)$
- 58) $(x^2 + 25)(x + 5)(x 5)$
- 59) $(t + 10)(t^2 10t + 100)$

Answer Key

Testname: DEPARTMENTAL FINAL REVIEW 0308

60)
$$6x^3(5-3x)(25+15x+9x^2)$$

61)
$$y = -\frac{29}{5}$$
, $y = -\frac{11}{2}$

62)
$$b = -18$$
, $b = 0$

63)
$$x = \frac{3}{7}, x = -\frac{1}{7}$$

64)
$$x = -12$$
, $x = 3$

73)
$$-\frac{2}{3}$$

74)
$$-\frac{1}{6}$$

75)
$$\frac{2}{x-3}$$

76)
$$\frac{1}{x+2}$$

77)
$$-\frac{x-1}{x-5}$$

78)
$$-\frac{x+2}{x-2}$$

79)
$$\{w \mid w \text{ is a real number and } w \neq 0\}$$

80)
$$\{x \mid x \text{ is a real number and } x \neq 3\}$$