Final Exam Review

The Final Exam: No Notes, No Formulas Allowed. Show All Work. 1 hour and 50 minutes.

For questions 1-3, use factoring to solve each polynomial equation.

1.
$$20x^2 - 12x = 0$$

2.
$$20x^2 - 23x + 6 = 0$$

3.
$$9x^2 + 7x - 7 = 3x(x-4)$$

4. Set up an equation and solve: The area of a rectangle is 21 sq. ft. The length is 1 ft. less than twice the width. Find the dimensions.

5. Divide:
$$\frac{x^2-4x-12}{x^2-x-6} \div \frac{18-3x}{x^2-9}$$
.

6. Add:
$$\frac{3x}{x^2-2x-8} + \frac{2x}{x^2-3x-10}$$

7. Simplify the complex fraction:
$$\frac{\frac{y}{x} + x}{\frac{x}{y} + y}$$

8. Solve for x:
$$\frac{4x}{x-1} - \frac{x}{x+3} = \frac{-12}{x^2 + 2x - 3}$$

9. Set up an equation to solve the following: The sum of a number and its reciprocal is $\frac{25}{12}$. Find the number.

Problems 10-13, assume all variables represent positive numbers.

10. Simplify:
$$\sqrt[3]{16x^9y^3}$$

11. Simplify:
$$\sqrt{50x^7y^9}$$

12. Combine the following expressions:
$$x^2 \sqrt{18y} - 2x\sqrt{2x^2y} + 4y\sqrt{12x} - \sqrt{3xy^2}$$

13. Rationalize the denominator:
$$\frac{7}{\sqrt{13}}$$

14. Rationalize the denominator:
$$\frac{\sqrt{x}}{\sqrt{x} - \sqrt{y}}$$

15. Evaluate each expression.

(a)
$$8^{\frac{2}{3}} =$$

(b)
$$\left(\frac{49}{4}\right)^{-3/2}$$

16. Simplify:
$$\left(5x^{\frac{3}{11}}\right)\left(6x^{\frac{5}{11}}\right)$$

- 17. Find the product. Write complex numbers in a + bi form: (7 + 2i)(4 + 3i)
- **18.** Find the quotient. Write complex numbers in a + bi form: $\frac{3}{5-7i}$

19. Solve for *x*:
$$\sqrt{2x+5} = x-5$$

20. Complete the table and graph: $y = x^2 - 5$.

X	y
-2	
-1	
0	
1	
2	

x

21. Answer the questions about the graph of *g* below.

(a) Does g represent a function?

(b) What is the domain of g? (Write answer in interval notation):

(c) What is the range of *g*? (Write answer in interval notation):

22. If f(x) = 2x + 5 and $g(x) = x^2 + 2$, find:

- (a) g(-5)
- **(b)** f(a+h)
- (c) g(a)
- **(d)** (f+g)(x)

23. Find the equation of the line that passes through (-3,2) and (-5,9).

Write this equation in slope-intercept form, if possible.

- **24.** Sketch the graph of the equation: 3x 5y = 15
- **25.** What is the slope of the line that is perpendicular to x + 3y = 4?

26. Write the equation of the line parallel to the line with equation y = 3 that passes through the point (4,6). Write in slope-intercept form, if possible.

27. Solve the following inequality. Write the solution set in interval notation and graph on the number line. $5(2x+7) \le 6(3x+5)$

- **28.** Graph the solution for $x 3y \ge 9$.
- **29.** Graph the solution for x > 5.

30. Solve using the extraction of roots theorem (square root method): $(2x+5)^2 = 8$

31. Solve by completing the square: $x^2 + 6x + 3 = 0$

32. Solve using the quadratic formula: $x^2 - 4x + 11 = 0$

33. Solve: |4x+3|=7

34. Solve the following absolute value inequality.

Write the solution set in interval notation and graph on the number line: $|3x-1|-2 \le 10$

Answers

1.
$$x = 0, \frac{3}{5}$$

1.
$$x = 0, \frac{3}{5}$$
 2. $x = \frac{3}{4}, \frac{2}{5}$

3.
$$x = \frac{1}{3}, -\frac{7}{2}$$

3.
$$x = \frac{1}{3}, -\frac{7}{2}$$
 4. length = 6 ft. width = $\frac{7}{2}$ ft.

5.
$$\frac{-(x+3)}{3}$$
 or $-\frac{(x+3)}{3}$

6.
$$\frac{5x^2 - 23x}{(x-4)(x+2)(x-5)}$$

7.
$$\frac{y^2 + x^2y}{x^2 + xy^2}$$
 or $\frac{y(y + x^2)}{x(x + y^2)}$

8.
$$x = \frac{-4}{3}$$
 $x = -3$ is extraneous solution

9. The equation:
$$x + \frac{1}{x} = \frac{25}{12}$$

$$x = \frac{3}{4}$$
 or $x = \frac{4}{3}$

10.
$$2x^3y\sqrt[3]{2}$$

11.
$$5x^3y^4\sqrt{2xy}$$

12.
$$x^2 \sqrt{2}y + 7y\sqrt{3x}$$
 13. $\frac{7\sqrt{13}}{13}$

13.
$$\frac{7\sqrt{13}}{13}$$

14.
$$\frac{\sqrt{x}(\sqrt{x} + \sqrt{y})}{x - y} = \frac{x + \sqrt{xy}}{x - y}$$

15. (a) 4 (b)
$$x = \frac{8}{343}$$
 16. $30x^{\frac{8}{11}}$

16.
$$30x^{\frac{8}{11}}$$

17.
$$22 + 29i$$

18.
$$\frac{15+21i}{74}$$
 or

$$\frac{15}{74} + \frac{21}{74}i$$

19.
$$x = 10$$
 $x = 2$ is extraneous solution

20.			
X	у		
-2	-1		
-1	-4		
0	- 5		
1	-4		
2	-1		

- 21. (a) yes
- (b) $\left(-\infty,\infty\right)$
- (c) $(-\infty, 4]$

22. (a) 27 (b)
$$2a+2h+5$$

(c)
$$a^2 + 2$$

(c)
$$a^2 + 2$$
 (d) $x^2 + 2x + 7$

23.
$$y = -\frac{7}{2}x - \frac{17}{2}y$$

25.
$$m = 3$$

26.
$$y = 6$$

27.
$$\left[\frac{5}{8}, \infty\right]$$

30.
$$\frac{-5 \pm 2\sqrt{2}}{2}$$

31.
$$x = -3 \pm \sqrt{6}$$

32.
$$x = \frac{4 \pm \sqrt{-28}}{2} = \frac{4 \pm 2i\sqrt{7}}{2} = 2 \pm i\sqrt{7}$$

33. $x = 1, \frac{-5}{2}$ (you will receive no credit for just one answer)

34.
$$\left[\frac{-11}{3}, \frac{13}{3}\right]$$

