Exam Review Mth 1314

List the intercepts and type(s) of symmetry, if any.

1)
$$y = \frac{-x^5}{x^2 - 5}$$

Answer: intercept: (0, 0)

symmetric with respect to origin

Determine whether the equation defines y as a function of x.

2) a)
$$y^2 = 6 - x^2$$

b)
$$y = \frac{1}{x}$$

Answer: not a function

Answer: function

Find the value for the function.

3) Find
$$f(x + 1)$$
 when $f(x) = \frac{x^2 - 3}{x + 5}$.

Answer:
$$\frac{x^2 + 2x - 2}{x + 6}$$

Find the domain of the function. Find any vertical and horizontal asymptotes.

4)
$$h(x) = \frac{x-4}{x^3-16x}$$

Answer: $\{x \mid x \neq -4, 0, 4\}$

For the given functions f and g, find the requested function.

5)
$$f(x) = x - 2$$
; $g(x) = 6x^2$

a) Find
$$(f + g)(x)$$

b) find
$$(f - g)(x)$$
 c) find $(f \circ g)(x)$

d) find
$$(g \circ f)(x)$$

e) Find
$$(f \circ f)(x)$$

f) find
$$(g \circ g)(x)$$

Answer:
$$(f + g)(x) = 6x^2 + x - 2$$
 $(f - g)(x) = x - 2 - 6x^2$

$$(g \circ f)(x) = 6x^2 = 24x + 24$$

$$(f \circ g)(x) = 6x^2 - 2$$

$$(g \circ f)(x) = 6x^2 - 24x + 24$$

$$(f \circ f)(x) = x - 4$$

$$(g \circ g)(x) = 216x^4$$

Write an equation that results in the indicated translation.

6) The squaring function, shifted 7 units downward, right 3 units and reflected over the x-axis.

Answer: $y = -(x - 3)^2 - 7$

Find the average rate of change for the function between the given values.

7)
$$f(x) = x^2 + 9x$$
; from 5 to 7

Answer: 21

Graph the function.

8)
$$f(x) = \begin{cases} -x + 3 & \text{if } x < 2 \\ 2x - 3 & \text{if } x \ge 2 \end{cases}$$

$$y$$

$$5 - y$$

$$-5 - y$$

$$-5 - y$$

Answer:

Use the graph to find the intervals on which it is increasing, decreasing, or constant. What are the intercepts? Find $f(\pi)$.

Answer: Decreasing on $\left(-\pi, -\frac{\pi}{2}\right)$ and $\left(\frac{\pi}{2}, \pi\right)$; increasing on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. y-int=2, $x-int=-\frac{\pi}{2}$, $f(\pi)=2$

2

Find the numbers, if any, at which f has a local minimum. What are the local maxima? 10)

Answer: f has a local minimum at x = -2.5 and 5; the local maxima at x = -8 and 2.2.

Use the accompanying graph of y = f(x) to sketch the graph of the indicated equation.

11)
$$y = 2f(x + 3) - 1$$

Answer:

Find the vertex and axis of symmetry of the graph of the function.

12)
$$f(x) = x^2 - 11x - 1$$

Answer:
$$\left(\frac{11}{2}, -\frac{125}{4}\right)$$
; $x = \frac{11}{2}$

Determine the domain and the range of the function. Determine where the function is increasing and decreasing.

13)
$$f(x) = x^2 - 4x + 4$$

b) Solve
$$x^2 - 4x + 4 \le 0$$

Answer: domain: all real numbers

range: $\{y \mid y \ge 0\}$ inc: $(2, \infty)$ dec: $(-\infty, 2)$ Answer: x = 2

Determine the quadratic function whose graph is given.

14)

Answer: $f(x) = x^2 + 2x + 2$

Determine, without graphing, whether the given quadratic function has a maximum value or a minimum value and then find that value.

15)
$$f(x) = x^2 - 3x - 8$$

Answer: minimum;
$$-\frac{41}{4}$$

Solve the problem.

16) The manufacturer of a CD player has found that the revenue R (in dollars) is

 $R(p) = -5p^2 + 1280p$, when the unit price is p dollars. If the manufacturer sets the price p to maximize revenue, what is the maximum revenue to the nearest whole dollar?

Answer: \$81,920

17) The number of mosquitoes M(x), in millions, in a certain area depends on the June rainfall x, in inches:

 $M(x) = 13x - x^2$. What rainfall produces the maximum number of mosquitoes?

Answer: 6.5 in.

Graph the function using its vertex, axis of symmetry, and intercepts.

18)
$$f(x) = x^2 - 10x$$

Answer: vertex (5, -25)

intercepts (0, 0), (10, 0)

Form a polynomial whose zeros and degree are given.

19) Zeros: 3, multiplicity 2; -3, multiplicity 2; degree 4

Answer: $f(x) = x^4 - 18x^2 + 81$

For the polynomial, determine the following :

- a) list each zero and its multiplicity
- b) determine whether the graph crosses or touches the x-axis at each x-intercept
- c) determine the degree of the polynomial
- d) determine the end behavior of the function
- e) determine the maximum number of turning points
- f) find the y-intercept

20)
$$f(x) = 3(x + 2)(x - 4)^3$$

Answer: -2, multiplicity 1, crosses x-axis; 4, multiplicity 3, crosses x-axis degree = 4, starts: positive ends: positive

5

maximum number turning pts : 3

y-int = -384

Form a polynomial f(x) with real coefficients having the given degree and zeros.

21) Degree: 4; zeros: -1, 2, and 1 - 2i.

Answer: $f(x) = x^4 - 3x^3 + 5x^2 - x - 10$

Find the real solutions of the equation.

22)
$$2x^3 - 13x^2 + 22x - 8 = 0$$

Answer:
$$\{\frac{1}{2}, 2, 4\}$$

Use the given zero to find the remaining zeros of the function.

23)
$$f(x) = x^3 + 2x^2 - 6x + 8$$
; zero: 1 + i

Find all zeros of the function and write the polynomial as a product of real factors.

24)
$$f(x) = x^3 - x^2 + 16x - 16$$

b)
$$f(x) = x^4 + 7x^3 + 16x^2 + 28x + 48$$

Answer:
$$x = 1, 4i, -4i$$

Answer:
$$x = -3, -4, 2i, -2i$$

$$f(x) = (x - 1)(x^2 + 16)$$

$$f(x) = (x + 3)(x + 4)(x^2 + 4)$$

For the given functions f and g, find the requested composite function value.

25)
$$f(x) = \sqrt{x+3}$$
, $g(x) = 5x$

a) Find
$$(f \circ g)(3)$$

b)
$$(g \circ f)(x)$$

c)
$$(g \circ g)(-2)$$

Answer:
$$3\sqrt{2}$$

$$5\sqrt{(x+3)}$$

The function f is one-to-one. Find its inverse. How do you know if it is one-to-one?

26)
$$f(x) = \frac{4x - 1}{7}$$

b)
$$f(x) = 6x^2 - 3, x \ge 0$$

Answer:
$$f^{-1}(x) = \frac{7x + 1}{4}$$

$$f^{-1}(x) = \sqrt{\frac{x+3}{6}}$$

functions are one-to-one because there are no even exponents on x or y.

Solve the equation.

27)
$$27 - 3x = \frac{1}{4}$$

b)
$$\left(\frac{25}{9}\right)^{x+1} = \left(\frac{3}{5}\right)^{x-1}$$

c)
$$e^{x-3} = \left(\frac{1}{e^2}\right)^{x+6}$$

$$x = -1/3$$

$$x = -3$$

Find the exact value of the logarithmic expression.

28)
$$\log_{5} \sqrt{5}$$

b)
$$\log_4 \frac{1}{64}$$

Answer:
$$\frac{1}{2}$$

8

Solve the equation.

29)
$$6 \ln 5x = 24$$

b)
$$\log_3 (x + 2) = -2$$

Answer:
$$\left\{\frac{e^4}{5}\right\}$$

$$-\frac{17}{9}$$

Write as the sum and/or difference of logarithms. Express powers as factors.

30)
$$\log_4\left(\frac{x^2}{y^6}\right)$$

Answer:
$$2 \log_4 x - 6 \log_4 y$$

Express as a single logarithm.

$$31)\frac{1}{2}(\log_7(x-3) - \log_7 x)$$

Answer:
$$\log_7 \sqrt{\frac{x-3}{x}}$$

Use the Change-of-Base Formula to evaluate the logarithm. Round your answer to three decimal places.

32)
$$\log_3 0.412$$

Solve the equation.

33)
$$\log (2 + x) - \log (x - 3) = \log 2$$

b)
$$\log_3 x + \log_3(x - 24) = 4$$

$$x = 27$$

34)
$$3^{2x} + 3^{x} - 6 = 0$$

b)
$$\left(\frac{5}{7}\right)^{x} = 2^{1-x}$$

c)
$$e^{x+2} = 5$$

Answer:
$$\left\{\frac{\ln 2}{\ln 3}\right\}$$

$$x = 1.941$$

$$x = -0.391$$