Math 1316 Final Exam Review

Convert the angle to a decimal in degrees. Round the answer to two decimal places.

1) 291°26'12"

Answer: 291.44°

Convert the angle to D° M' S" form. Round the answer to the nearest second.

2) 183.82°

Answer: 183°49'12"

Solve the problem.

3) For a circle of radius 4 feet, find the arc length s subtended by a central angle of 30°. Round to the nearest hundredth.

Answer: 2.09 ft

Convert the angle to degrees or radians, as appropriate. Express the answer as multiple of π .

4) a)
$$54^{\circ}$$
 (in terms of π)

b)
$$\frac{12\pi}{7}$$

Answer:
$$\frac{3\pi}{10}$$

Answer: 308.57°

If A denotes the area of the sector of a circle of radius r formed by the central angle θ , find the missing quantity. If necessary, round the answer to two decimal places.

5) r = 7 feet, A = 56 square feet, $\theta = ?$

Answer: 2.29 radians

Solve the problem.

6) A pick-up truck is fitted with new tires which have a diameter of 40 inches. How fast will the pick-up truck be moving when the wheels are rotating at 395 revolutions per minute? Express the answer in miles per hour rounded to the nearest whole number.

Answer: 47 mph

Use Fundamental Identities to find the exact value of the expression. Do not use a calculator.

7) a)
$$\sec^2 25^\circ - \tan^2 25^\circ$$

b)
$$\tan 5^{\circ} - \frac{\cos 85^{\circ}}{\cos 5^{\circ}}$$

Answer: 1

Answer: (

Use the definition or identities to find the exact value of the indicated trigonometric function of the acute angle θ .

8)
$$\tan \theta = \frac{7}{\sqrt{15}}$$

Find $\sin \theta$ and $\cos \theta$.

Answer: $\sin \theta = \frac{7}{8}$, $\cos \theta = \frac{\sqrt{15}}{8}$

Solve the problem.

9) Given the approximation $\sin 31^{\circ} \approx 0.52$, use trigonometric identities to find the approximate value of $\cot 31^{\circ}$. If necessary, round the answer to two decimal places.

Answer: 1.66

 $f(x) = \sin x$, $g(x) = \cos x$, h(x) = 2x, and $p(x) = \frac{x}{2}$. Find the value of the following.

10)
$$(p \circ g) \left(\frac{\pi}{4}\right)$$
Answer: $\frac{\sqrt{2}}{4}$

Solve the problem.

11) A boat leaves the entrance of a harbor and travels 83 miles on a bearing of N 19° E. How many miles north and how many miles east from the harbor has the boat traveled? Round to the nearest tenth of a mile.

Answer: 78.5 miles north and 27 miles east

With the information given, find the exact value of the indicated trigonometric function.

12) a) (4, -2) Find csc
$$\theta$$
.

c)
$$\csc \frac{-2\pi}{3}$$

d)
$$\cos \frac{8\pi}{3}$$

Answer:
$$-\sqrt{5}$$

Ans: undef

Ans:
$$-\frac{2\sqrt{3}}{3}$$
 Ans: $-\frac{1}{2}$

Find the exact value of the indicated trigonometric function of θ .

13) a)
$$\cos \theta = \frac{2}{5}$$
, $\tan \theta < 0$ Find $\sin \theta$. b) $\tan \left(\frac{9\pi}{4}\right) - \cos \left(\frac{9\pi}{4}\right)$

an
$$\theta < 0$$
 Find $\sin \theta$. b) tan

Answer:
$$-\frac{\sqrt{21}}{5}$$

Ans:
$$\frac{2-\sqrt{2}}{2}$$

14) If
$$f(\theta) = \tan \theta$$
 and $f(a) = 5$, find the exact value of $f(-a)$.

Answer: -5

Without graphing the function, determine its amplitude and period

$$15) y = \frac{7}{6} \sin \left(-\frac{6\pi}{5}x\right)$$

Answer: period: $\frac{5}{3}$ amplitude: $\frac{7}{6}$

Find (i) the amplitude, (ii) the period, and (iii) the phase shift.

16)
$$y = -\frac{1}{2}\sin(4x + 3\pi)$$

Answer: (i)
$$\frac{1}{2}$$
 (ii) $\frac{\pi}{2}$ (iii) $-\frac{3\pi}{4}$

(ii)
$$\frac{\pi}{2}$$

(iii) –
$$\frac{3\pi}{4}$$

Use transformations to graph the function.

17) a)
$$y = -3 \sin\left(\frac{1}{2}x\right)$$

Answer:

Find an equation for the graph.

18)

b)
$$y = -\frac{1}{2} \cos \left(\frac{\pi}{2} x \right)$$

Answei

Match the given function to its graph.

19) 1)
$$y = 2 \sin(3x)$$

2)
$$y = 2 \sin \left(\frac{1}{3} x \right)$$

В

D

Answer: 1A, 2C, 3D, 4B

Write the equation of a sine function that has the given characteristics.

20) Amplitude: 5

Period: 3π

Phase Shift: $\frac{\pi}{3}$

Answer: $y = 5 \sin\left(\frac{2}{3}x - \frac{2}{9}\pi\right)$

Graph the sinusoidal function using key points.

21)
$$y = -2 \cos\left(\frac{1}{2}x\right) + 2$$

Answer:

Find the exact value of the expression.

22) a)
$$\cos^{-1} \left(-\frac{\sqrt{3}}{2} \right)$$
 b) $\sin^{-1} \left(\sin \frac{5\pi}{4} \right)$

b)
$$\sin^{-1}\left(\sin\frac{3\pi}{4}\right)$$

c)
$$\csc\left(\cos^{-1}\frac{\sqrt{3}}{2}\right)$$
 d) $\cot\left[\cos^{-1}\left(-\frac{7}{25}\right)\right]$

d)
$$\cot \left[\cos^{-1}\left(-\frac{7}{25}\right)\right]$$

Answer: $\frac{5\pi}{6}$

Answer: $-\frac{\pi}{4}$

Answer: 2

Answer:- $\frac{7}{24}$

Find the inverse function f^{-1} of the function f.

23)
$$f(x) = 7 \tan(10x - 5)$$

Answer:
$$f^{-1}(x) = \frac{1}{10} \left[\tan^{-1} \left(\frac{x}{7} \right) + 5 \right]$$

Find the exact solution of the equation.

24)
$$-3 \sin^{-1}(2x) = \pi$$

Answer:
$$x = -\frac{\sqrt{3}}{4}$$

Establish the identity.

25)
$$\sec u + \tan u = \frac{\cos u}{1 - \sin u}$$

Answer:
$$\sec u + \tan u = \frac{1}{\cos u} + \frac{\sin u}{\cos u} = \frac{1 + \sin u}{\cos u} = \frac{1 + \sin u}{\cos u} \cdot \frac{1 - \sin u}{1 - \sin u} = \frac{1 - \sin^2 u}{\cos u(1 - \sin u)} = \frac{\cos^2 u}{\cos u(1 - \sin u)} = \frac{\cos u}{1 - \sin u}$$

5

$$26) \frac{\sin \alpha + \sin \beta}{\csc \alpha + \csc \beta} = \sin \alpha \sin \beta$$

Answer:
$$\frac{\sin\alpha + \sin\beta}{\csc\alpha + \csc\beta} = \frac{\sin\alpha + \sin\beta}{\frac{1}{\sin\alpha} + \frac{1}{\sin\beta}} = \frac{\sin\alpha + \sin\beta}{\frac{\sin\beta + \sin\alpha}{\sin\alpha \sin\beta}} = (\sin\alpha + \sin\beta) \cdot \frac{\sin\alpha \sin\beta}{\sin\beta + \sin\alpha} = \sin\alpha \sin\beta$$

Find the exact value of the expression.

27) a)
$$\tan \frac{\pi}{12}$$

Answer:
$$2 - \sqrt{3}$$
 Answer: $\frac{1}{2}$

Answer:
$$\frac{1}{2}$$

Answer:-2 +
$$\sqrt{3}$$

Find the exact value under the given conditions.

28)
$$\tan \alpha = \frac{15}{8}$$
, $\pi < \alpha < \frac{3\pi}{2}$; $\cos \beta = -\frac{24}{25}$, $\frac{\pi}{2} < \beta < \pi$ Find $\sin (\alpha + \beta)$.

Answer:
$$\frac{304}{425}$$

Establish the identity.

29)
$$\operatorname{sed}\left(\frac{\pi}{2} + u\right) = -\csc u$$

Answer:
$$\sec\left(\frac{\pi}{2} + u\right) = \frac{1}{\cos(\pi/2)\cos u - \sin(\pi/2)\sin u} = \frac{1}{0 \cdot \cos u - 1 \cdot \sin u} = -\csc u.$$

Find the exact value of the expression.

30)
$$\cos \left(\sin^{-1} \frac{1}{3} - \tan^{-1} \frac{1}{2} \right)$$

Answer:
$$\frac{4\sqrt{10} + \sqrt{5}}{15}$$

Use the information given about the angle θ , $0 \le \theta \le 2\pi$, to find the exact value of the indicated trigonometric function.

31) a)
$$\cos \theta = \frac{20}{29}$$
, $\frac{3\pi}{2} < \theta < 2\pi$ Find $\sin(2\theta)$.

b)
$$\tan \theta = \frac{12}{5}$$
, $\csc \theta < 0$ Find $\cos \frac{\theta}{2}$.

Answer:
$$-\frac{840}{841}$$

Answer: -
$$\frac{2\sqrt{13}}{13}$$

Solve the equation on the interval $0 \le \theta < 2\pi$.

32) a)
$$tan(2\theta) = -1$$

Answer:
$$\frac{3\pi}{8}, \frac{7\pi}{8}, \frac{11\pi}{8}, \frac{15\pi}{8}$$

b)2 cos
$$\theta$$
 + $2\sqrt{3} = \sqrt{3}$

Answer:
$$\frac{5\pi}{6}$$
, $\frac{7\pi}{6}$

33) a)
$$2\cos^2\theta - 3\cos\theta + 1 = 0$$

Answer: 0,
$$\frac{\pi}{3}$$
, $\frac{5\pi}{3}$

b)
$$\sin^2 \theta - \cos^2 \theta + \cos \theta = 0$$

Answer:0,
$$\frac{2\pi}{3}$$
, $\frac{4\pi}{3}$

34)
$$\cos(2\theta) = \sin \theta$$

Answer:
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$, $\frac{3\pi}{2}$

Use a calculator to solve the equation. Round the solution(s) to two decimal places if necessary.

35)
$$\cos x + \sin x = 2x$$

Answer: 0.70

Use a calculator to solve the equation on the interval $0 \le \theta < 2\pi$. Round the answer to two decimal places.

36)
$$\sin \theta = -0.24$$

Solve the <u>right</u> triangle using the information given. Round answers to two decimal places, if necessary.

37)
$$b = 6$$
, $A = 30^\circ$; Find a, c, and B.

Answer:
$$a = 3.46$$

 $c = 6.93$
 $B = 60^{\circ}$

Solve the problem.

38) John (whose line of sight is 6 ft above horizontal) is trying to estimate the height of a tall oak tree. He first measures the angle of elevation from where he is standing as 35°. He walks 30 feet closer to the tree and finds that the angle of elevation has increased by 12°. Estimate the height of the tree rounded to the nearest whole number.

Solve the triangle.

39)
$$B = 20^{\circ}$$
, $C = 60^{\circ}$, $a = 5$

Answer:
$$A = 100^{\circ}$$
, $b = 1.74$, $c = 4.4$

Two sides and an angle are given. Determine whether the given information results in one triangle, two triangles, or no triangle at all. Solve any triangle(s) that results.

40)
$$B = 15^{\circ}$$
, $b = 9.3$, $a = 17.97$

$$A_1 = 30^{\circ}$$
, $C_1 = 135^{\circ}$, $c_1 = 25.4$ or

$$A_2 = 150^{\circ}$$
, $C_2 = 15^{\circ}$, $c_2 = 9.3$

Solve the problem.

41) It is 4.7 km from Lighthouse A to Port B. The bearing of the port from the lighthouse is N7°E. A ship has sailed due west from the port and its bearing from the lighthouse is N31°E. How far has the ship sailed from the port? Round your answer to the nearest 0.1 km.

Solve the triangle.

42)
$$b = 2$$
, $c = 4$, $A = 95^{\circ}$

Answer:
$$a = 4.63$$
, $B = 25.5^{\circ}$, $C = 59.5^{\circ}$

43)
$$a = 9$$
, $b = 6$, $c = 5$

Answer:
$$A = 109.5^{\circ}$$
, $B = 38.9^{\circ}$, $C = 31.6^{\circ}$

Solve the problem.

44) A ladder leans against a building that has a wall slanting away from the ladder at an angle of 96° with the ground. If the bottom of the ladder is 23 feet from the base of the wall and it reaches a point 52 feet up the wall, how tall is the ladder to the nearest foot?

Answer: 59 ft

Find the area of the triangle. If necessary, round the answer to two decimal places.

45) $A = 23^{\circ}$, b = 9, c = 2

Answer: 3.52

Solve the problem.

46) A room in the shape of a triangle has sides of length 6 yd, 10 yd, and 13 yd. If carpeting costs \$17.50 a square yard and padding costs \$3.25 a square yard, how much to the nearest dollar will it cost to carpet the room, assuming that there is no waste?

Answer: \$598

- 47) Plot the point $\left(4, \frac{\pi}{6}\right)$ and find other polar coordinates (r, θ) of the point for which:
 - (a) r > 0, $-2\pi \le \theta < 0$
 - (b) r < 0, $0 \le \theta < 2\pi$
 - (c) r > 0 $2\pi \le \theta < 4\pi$

Answer:

- (a) $\left[4, -\frac{11\pi}{6}\right]$
- (b) $\left[-4, \frac{7\pi}{6} \right]$
- (c) $\left\{4, \frac{13\pi}{6}\right\}$

The polar coordinates of a point are given. Find the rectangular coordinates of the point.

$$48) \left(5, -\frac{4\pi}{3} \right)$$
Answer: $\left(-\frac{5}{2}, \frac{5\sqrt{3}}{2} \right)$

The rectangular coordinates of a point are given. Find polar coordinates for the point.

Answer:
$$\left(2\sqrt{2}, -\frac{\pi}{4}\right)$$

The letters r and θ represent polar coordinates. Write the equation using rectangular coordinates (x, y).

$$50) r = \frac{5}{1 + \cos \theta}$$

Answer:
$$y^2 = 25 - 10x$$

The letters x and y represent rectangular coordinates. Write the equation using polar coordinates (r, θ) .

51)
$$2xy = 5$$

Answer:
$$r^2 \sin 2\theta = 5$$

Find $\frac{Z}{W}$. Leave your answer in polar form.

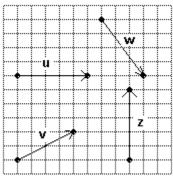
52)
$$z = \sqrt{3} \left(\cos \frac{7\pi}{4} + i \sin \frac{7\pi}{4} \right)$$

$$w = \sqrt{6} \left(\cos \frac{9\pi}{4} + i \sin \frac{9\pi}{4} \right)$$

Answer:
$$\frac{\sqrt{2}}{2} \left(\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right)$$

53)
$$z = 1 + i$$

 $w = \sqrt{3} - i$


Answer:
$$2\sqrt{2}(\cos 15^\circ + i \sin 15^\circ)$$

Write the expression in the standard form a + bi.

Find all the complex roots. Leave your answers in polar form with the argument in degrees.

9

Use the vectors in the figure below to graph the following vector.

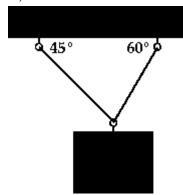
56) v - w

Answer:

The vector v has initial point P and terminal point Q. Write v in the form ai+ bj; that is, find its position vector.

57)
$$P = (3, 4); Q = (-2, -2)$$

Answer:
$$\mathbf{v} = -5\mathbf{i} - 6\mathbf{j}$$


Find the unit vector having the same direction as v.

58)
$$v = 3i - 4j$$

Answer:
$$\mathbf{u} = \frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}$$

Solve the problem.

59) A box of supplies that weighs 1500 kilograms is suspended by two cables as shown in the figure. To two decimal places, what is the tension in the two cables?

Answer: Tension in right cable: 1098.08 kg; tension in left cable: 776.46 kg

Find the angle between v and w. Round your answer to one decimal place, if necessary.

60) $\mathbf{v} = -6\mathbf{i} - 7\mathbf{j}$, $\mathbf{w} = -5\mathbf{i} - 6\mathbf{j}$

Answer: 0.8°

Solve the problem.

61) Which of the following vectors is parallel to $\mathbf{v} = \mathbf{i} - \mathbf{j}$?

A) $\mathbf{w} = \mathbf{i} - 2\mathbf{j}$

- B) w = 2i 2j
- C) w = i + j
- D) w = 2i + 2j

Answer: B

62) Which of the following vectors is orthogonal to 20i - 8j?

A) w = 15i - 6j

B) w = 4i + 3j

C) w = 20i + 4j

D) w = -10i - 25j

Answer: D

Decompose v into two vectors v_1 and v_2 , where v_1 is parallel to w and v_2 is orthogonal to w.

63) v = i + 4j, w = -3i + j

Answer: $\mathbf{v}_1 = -\frac{3}{10}\mathbf{i} + \frac{1}{10}\mathbf{j}$, $\mathbf{v}_2 = \frac{13}{10}\mathbf{i} + \frac{39}{10}\mathbf{j}$