Complex Numbers

What happens when we want to solve the equation: $x^{2}=-4$?
In order to solve this equation, we must introduce $\sqrt{-1}$ and the set of imaginary numbers.
We will represent $\sqrt{-1}$ with \boldsymbol{i}.
This leads to $(\sqrt{-1})^{2}=\boldsymbol{i}^{2}$

$$
(\sqrt{-1})^{2}=-1=i^{2}
$$

Therefore, $-1=i^{2}$
Any square root of a negative number can be written in terms of \boldsymbol{i}.
$\sqrt{-2}=$

$$
\sqrt{-9}=
$$

$$
\begin{aligned}
& \sqrt{-4}= \\
& \sqrt{-12}=
\end{aligned}
$$

A complex number has a real part and an imaginary part.

$$
3+5 i
$$

We can add, subtract, multiply, and divide complex numbers.
Perform the indicated operations:

1. $(-4+7 i)+(3+2 i)$
2. $(3-5 i)-(7+4 i)$

3. $(2+3 i)(4+5 i)$

4. $(4-i)^{2}$
Review: $\frac{3}{5 \sqrt{2}}$
5. $\frac{3-5 i}{2 i}$

Review: $\frac{3}{4+\sqrt{5}}$

The "complex conjugate" of $3+5 i$ is $3-5 i$
Multiply: $(3+5 i)(3-5 i)$
6. $\frac{2 i}{3-5 i}$
7. $\frac{3+2 i}{-5+4 i}$

