Radical Equations

Process:

1. Isolate the radical.
2. Get rid of the radical by raising both sides to the appropriate power.

$$
(\sqrt{x})^{2}=x \quad(\sqrt[3]{x})^{3}=x \quad(\sqrt[4]{x})^{4}=x
$$

3. Solve the resulting equation.
4. Check for extraneous solutions.
5. $\sqrt{4 x+1}-5=0$
6. $\sqrt[3]{x^{2}+4}-1=4$
7. $\sqrt{x^{2}+16}+6=1$
8. $\sqrt[4]{x^{2}+x-4}=2$
9. $2 x=\sqrt{4 x+15}$
10. $\sqrt{3 x+4}-2=x$

Extra Example: $\sqrt{30-2 x}+x=3$

Remember that a fractional exponent can be written in radical form.
$x^{3 / 2}=\sqrt{x^{3}}$ or $(\sqrt{x})^{3} \quad x^{2 / 5}=\sqrt[5]{x^{2}}$ or $(\sqrt[5]{x})^{2}$
If you encounter an equation that has a variable raised to a fractional exponent, you solve it just like a radical equation.
Get rid of the radical by raising both sides to the appropriate power. $\left(x^{3 / 2}\right)^{2 / 3}=x$

$$
\left(x^{2 / 5}\right)^{5 / 2}=x
$$

7. $\left(x^{2}+6 x-7\right)^{3 / 2}=27$
8. $(x-2)^{2 / 3}=9$
