Notes Linear Functions

SLOPE:

Given 2 points (x_1, y_1) and (x_2, y_2) the slope m between these 2 points can be found by the formula:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Find the slope of the line that passes through the following points:

Ex1: (-3,4) (9,1)	Ex2: $(-2,3)$ $(-2,1)$	Ex3: $(-5,2)$ $(0,2)$

Graphing Lines:

When you graph a line given slope and a point:

- 1. Plot the given point.
- 2. Use the slope to find the next point (think rise over run).
- 3. Connect the 2 points with a straight line and make sure your line has arrows on its ends.

Graph the following lines:

Finding Equations of Lines:

- Slope intercept form of a line is represented by the formula y = mx + b, where m = slope & b = y-intercept
- Point-slope form of a line is represented by the formula $y-y_1=m(x-x_1)$, where m= slope & (x_1,y_1) is a point on the graph.
- In order to obtain the equation of a line you need to know the slope of the line and a point on the line.
 - Once we have this information, we substitute it into point-slope form and solve the equation for y is possible (this gets our equation in slope intercept form).

Find the equation of the following lines; write your answers in slope intercept form if possible:

EX7:
$$m = \frac{3}{5}$$
 through $(1, -2)$

EX8: m = 0 through (1, -2)

EX9: m undefined through (1,-2)

EX10: (-3,4) (9,1)

EX11: f(6) = 3 f(-2) = 4

Parallel and Perpendicular Lines:

- Two lines are said to be <u>parallel</u> if they have the same slope (graphically they will never intersect).
 - o To find the equation of a line that is parallel to another line:
 - 1. Find the slope of the given line.
 - 2. Use the given point and the slope obtained in step 1 to find the equation of the line by substituting the information into point-slope form and then solving for y if possible.
- Two lines are said to be <u>perpendicular</u> if they have the opposite reciprocal slopes (graphically the lines intersect at a 90 degree angle).
 - o To find the equation of a line that is perpendicular to another line:
 - 1. Find the slope of the given line.
 - 2. Find the perpendicular slope (opposite reciprocal of the slope in step 1)
 - 3. Use the given point and the slope obtained in step 2 to find the equation of the line by substituting the information into point-slope form and then solving for y if possible.

Find the equation of the following lines:

Ex12: Through	(-3, -5)	parallel	to	5x - 2y = 13

