Recall we can find a function value by \qquad .

We can also find \qquad by looking at the \qquad .

To find a function value, go to the \qquad given. Your \qquad is the
\qquad -.

Find $f(-2)=$ \qquad
Find $f(-1)=$ \qquad

Find $f(0)=$ \qquad

Find $f(1)=$ \qquad

Find $f(2)=$ \qquad

Recall we can determine if a \qquad is a \qquad by seeing if any
\qquad values repeat and have \qquad .

We can also determine if a \qquad is a \qquad by looking at the graph.

The \qquad states that if every \qquad
crosses the graph of a given relation at most \qquad then that \qquad is a

The \qquad of a relation is all the \qquad that relation covers. In order to find the \qquad you need look at the end points of the relation that is graphed. (we look \qquad to \qquad _)

The \qquad of a relation is all the \qquad that relation covers. In order to find the \qquad you look at the highest/lowest points of the relation that is graphed. (we look \qquad to \qquad

We will write the domain and range using \qquad .

Recall \qquad represents a set of numbers. It contains either a bracket [or a parenthesis (the \qquad , the \qquad and ends with either a bracket] or a parenthesis).

Find the domain and range:

