Notes Graphs of Higher Degree Polynomial Functions

Polynomial Functions of degree2 or higher are smooth and continuous. (No sharp corners or breaks).

To graph general polynomial functions we need to:

1. Know the functions end behavior.
2. Determine the x-intercept (s) of the function and the MULTIPLICITY of each x-intercept.
3. Determine the y-intercept.
4. End Behavior is what the function looks like at the very left and right of the graph. To determine end behavior of will be we need to identify the DEGREE and LEADING COEFFICIENT.

DEGREE: largest exponent of the polynomial once it is completely distributed
LEADING COEFFICIENT: the number in front of the variable with the highest degree (exponent)

Determine the Extreme/End Behavior:

EX1: $f(x)=2 x+5$	EX2: $f(x)=-\frac{1}{4} x^{4}+x^{2}-x$
EX3: $f(x)=(x-5)(x+1)^{2}(x-3)$	EX4: $f(x)=-3(x-5)(x+1)^{2}(x-3)$

2. Finding x-intercept(s) their multiplicity: The x-intercept(s) and their multiplicity tell us what happens in the middle of the graph

X-INTERCEPT(S): Recall, to find the x-intercept(s) (or zeros) of a function you must set it equal to zero and solve for x .

MULTIPLICITY: Multiplicity is the number of times a number is a zero for the given function.
Given $(x-h)^{k}=0$, we say that h is a zero of multiplicity k

- If a zero has an ODD multiplicity, then the graph of the function will CROSS the X-Axis at that number.
- If a zero has an EVEN multiplicity, then the graph of the function will BOUNCE (touch the X-Axis and turn around) at that number.

3. Finding the y-intercept: The y-intercept tell us what happens in the middle of the graph \mathbf{Y}-INTERCEPT: To find the y -intercept, compute $f(0)$.

Graph the following polynomial functions and identify the end behavior, x-intercepts and their multiplicity, and the y-intercept of each
EX5: $f(x)=x^{3}-9 x$

a. End behavior: \qquad
b. X-intercepts: \qquad
Multiplicity: \qquad
c. Y-intercept: \qquad

