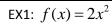
Notes Quadratic Functions

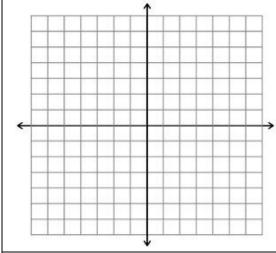
We are accustomed to seeing the general form of a quadratic function : $f(x) = ax^2 + bx + c$

The standard form of a quadratic function is: $f(x) = a(x-h)^2 + k$

Where (h,k) is the vertex of the parabola (the turning point) and \mathcal{A} is the compression/stretch. If a>0 the parabola opens $\underline{\mathbf{up}}$, if a<0 the parabola opens $\underline{\mathbf{down}}$ Also, the parabola will be symmetric with respect to the line x=h

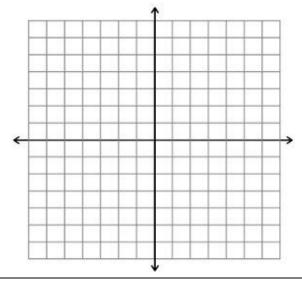
Determine the vertex, axis of symmetry and range of the following functions and graph them.





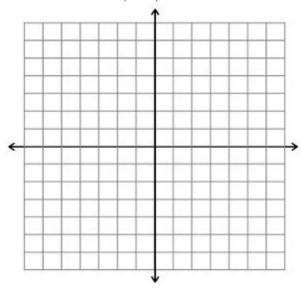
- a) Vertex:_____
- b) Axis of symmetry:_____
- c) Range:_____

EX2:
$$f(x) = \frac{1}{4}x^2 - \frac{1}{2}$$



- a) Vertex:
- b) Axis of symmetry:_____
- c) Range:

EX3:
$$f(x) = -3(x+1)^2 - 2$$



- a) Vertex:_____
- b) Axis of symmetry:_____
- c) Range:

Note: All of the functions above are in **standard form**. If function is \underline{NOT} in standard form, all we need to do is determine the vertex (h, k) of that function and we can rewrite the equation in standard form.

$$f(x) = a(x-h)^2 + k$$

To find the standard form for any quadratic in the form $f(x) = ax^2 + bx + c$:

1. Find the vertex of the parabola: (h, k)

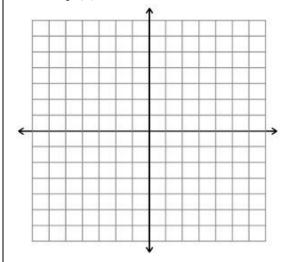
$$h = \frac{-b}{2a}$$

$$k = f\left(\frac{-b}{2a}\right)$$
 or $k = f(h)$

2. Plug in h, k and a into the formula $f(x) = a(x-h)^2 + k$

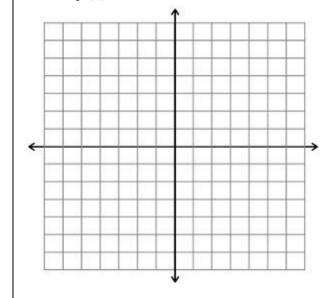
Determine the standard form of the function as well as the vertex and range. Then graph the function.

EX4: $f(x) = -x^2 - 4x - 3$



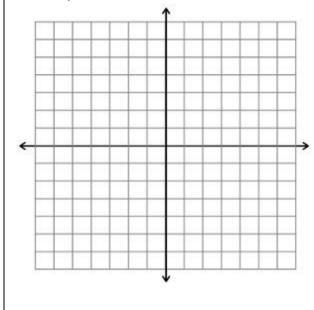
- a) Standard Form:_____
- b) Vertex:
- c) Range:_____

EX5: $f(x) = 3x^2 - 12x + 9$



- a) Standard Form:_____
- b) Vertex:_____
- c) Range:_____

EX6: $f(x) = 2x^2 - 10x + 8$



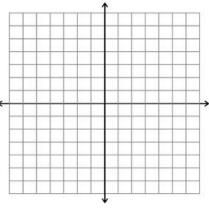
- a) Standard Form:_____
- b) Vertex:_____
- c) Range:_____

All parabolas have either a MAXIMUM VALUE or a MINIMUM VALUE.

- If the parabola opens up (a > 0 the parabola will have a minimum value at y = k .
- If the parabola opens down (a < 0 the parabola will have a maximum value at y = k .

Find the x intercepts and the min or max value of the following functions. Then graph the function.

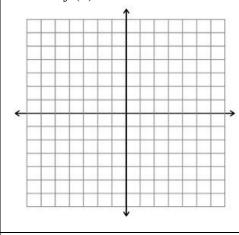
EX7: $f(x) = -(x-2)^2 + 4$



a) X-int(s):_____

b) Min/Max value:_____

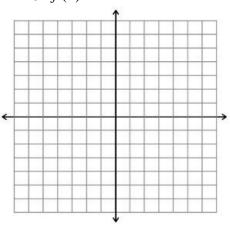
EX8: $f(x) = x^2 + 6x - 7$



a) X-int(s) :_____

b) Min/Max value: _____

EX9: $f(x) = 4x^2 + 12x + 9$



a) X-int(s):_____

b) Min/Max value: _____