Notes Quadratic Functions

We are accustomed to seeing the general form of a quadratic function : $f(x)=a x^{2}+b x+c$

The standard form of a quadratic function is: $f(x)=a(x-h)^{2}+k$
Where (h, k) is the vertex of the parabola (the turning point) and a is the compression/stretch. If $a>0$ the parabola opens up, if $a<0$ the parabola opens down Also, the parabola will be symmetric with respect to the line $x=h$

Determine the vertex, axis of symmetry and range of the following functions and graph them.

Note: All of the functions above are in standard form. If function is NOT in standard form, all we need to do is determine the vertex (h, k) of that function and we can rewrite the equation in standard form.

$$
f(x)=a(x-h)^{2}+k
$$

To find the standard form for any quadratic in the form $f(x)=a x^{2}+b x+c$:

1. Find the vertex of the parabola: (h, k)

$$
h=\frac{-b}{2 a} \quad k=f\left(\frac{-b}{2 a}\right) \text { or } k=f(h)
$$

2. Plug in h, k and a into the formula $f(x)=a(x-h)^{2}+k$

Determine the standard form of the function as well as the vertex and range. Then graph the function.
EX4: $f(x)=-x^{2}-4 x-3$

a) Standard Form: \qquad
b) Vertex: \qquad
c) Range: \qquad

All parabolas have either a MAXIMUM VALUE or a MINIMUM VALUE.

- If the parabola opens up ($a>0$ the parabola will have a minimum value at $y=k$.
- If the parabola opens down ($a<0$ the parabola will have a maximum value at $y=k$.

Find the x intercepts and the min or max value of the following functions. Then graph the function.

