## Classwork Factor and Remainder Theorem

Please work all problems on a separate sheet of paper.

In exercises 1-5, use the Remainder Theorem to evaluate $f(c)$.

1. $f(x)=2 x^{3}+6 x^{2}-9 x+21 \quad$ and $\quad c=-1$
2. $f(x)=x^{4}-15 x^{3}+5 x-7 \quad$ and $\quad c=3$
3. $f(x)=2 x^{3}-5 x^{2}-4 x+3 \quad$ and $\quad c=1 / 2$
4. $f(x)=6 x^{4}+x^{3}-7 x+11 \quad$ and $\quad c=0$
5. $f(x)=x^{3}-2 x^{2}+5 x \quad$ and $\quad c=6$

In exercises 6-8 determine if the number $c$. Is a zero of the polynomial $f$
6. $f(x)=-6 x^{3}+9 x^{2}-7 x+26 \quad$ and $\quad c=2$
7. $f(x)=x^{4}-2 x^{3}+x^{2}+48 \quad$ and $\quad c=-3$
8. $f(x)=8 x^{5}-5 x^{2}+10 \quad$ and $\quad c=1 / 2$

In exercises 9-10 determine if
9. $x-4$ is a factor of $f(x)=x^{3}-2 x^{2}+8 x+64$
10. $x+1$ is a factor of $f(x)=x^{4}-2 x^{2}+x+3$

In exercises 11-13 factor $f(x)$ completely (over the integers) given $c$ is a zero of $f$ of multiplicity $k$.
11. $f(x)=3 x^{3}-8 x^{2}+3 x+2$ given that $c=2$ is a zero of $f$
12. $f(x)=2 x^{4}+21 x^{3}+57 x^{2}-5 x-75$ given that $c=-5$ is a zero of multiplicity two
13. $f(x)=4 x^{4}-9 x^{3}+3 x^{2}+5 x-3$ given that $c=1$ is a zero of multiplicity three

