Notes Inverse Function

Recall a relation is a function if each value in the domain corresponds with exactly one value in the range. Graphically we said that a relation was a function if it passed the vertical line test.

Use the vertical line test to determine if the following relations are functions.
Ex1:

A function is said to be ONE-TO-ONE if and only if every value for y corresponds to only one x-value.

Is the function one-to-one?:
\qquad

Is the function one-to-one?: \qquad

We could use the horizontal line test to determine if a function is one-to-one.

- Horizontal line test: If you can draw a horizontal line and cross the graph of a function in at most one place, then the function is one-to-one.

Use the horizontal line test to determine if the following functions are one-to-one.

EX4		EX5:		EX6:	
		EXS			

Only ONE TO ONE functions have inverses.

- The functions $f(x)$ and $g(x)$ are inverses if and only if $f(g(x))=x$ AND $g(f(x))=x$.

Determine if the following functions are inverses:

EX7: $f(x)=2 x$ and $g(x)=\frac{x}{2}$	EX8: $f(x)=\frac{1}{4} x-5$ and $g(x)=4 x-20$

Ex9: $f(x)=\sqrt[3]{x+5}$ and $g(x)=x^{3}-5$

Think of the inverse of a function as the "reverse" of that function. The inverse function UNDOES the operations that were done on the function.

To find the inverse of a function:

1) Replace $f(x)$ with \mathbf{y}
2) Swap the \mathbf{x} and the \mathbf{y}
3) Solve for y
4) Replace y with $f^{-1}(x)$ (Note: $f^{-1}(x)$ is said f inverse of x , NOT f to the negative one.)

Find the inverse of the one-to-one function. Graph both the function \& its inverse on the same axes.

Properties of inverse functions:
i. $\quad f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
ii. $\quad f(x)$ and $f^{-1}(x)$ are reflections of each other with respect to the line $y=x$
iii. The domain of $f(x)$ is the range of $f^{-1}(x)$
iv. The range of $f(x)$ is the domain of $f^{-1}(x)$

Find the inverse of the one-to-one function. Graph both the function \& its inverse on the same axes.

