Notes Matrices

- A *matrix* is a rectangular array of numbers arranged in rows and columns placed inside brackets.
 - The numbers inside the brackets of a matrix are called elements.

	[13	15	21	
Example of a Matrix:	7	5	6	
	12	1	41	

We will be using matrices to solve Systems of Linear Equations.

- An <u>Augmented Matrix</u> is a matrix that is used to represent a system of Linear Equations. It has a vertical bar separating the columns of the matrix into 2 groups (one for the coefficients of the variables in the linear system and the other for the answers).
 - Note: If a variable is missing, we assign it the coefficient of **ZERO**.

Rewrite the following system of equations in an augmented matrix

System of Equation	Augmented Matrix
3x + y - z = 9	
Ex1: $-x - y + 3z = 3$	
x + 2y - z = 0	
x - 3y + 2z = -12	
Ex2: $y + 4z = -3$	
z = 2	
$3x \qquad -5z = -12$	
Ex3: $4y - z = 5$	
2x - 3y = -4	

- One method to solve a system of linear equations using a matrix is to get the matrix in <u>Echelon</u>
 <u>Form</u>, which means to have only 1s in your main diagonal (going from upper-left to lower-right) and 0s below the ones.
- Once you are in Echelon Form, you will use back substitution to solve your system.

Examples of matrices in Echelon Form:
$$\begin{bmatrix} 1 & 2 & -1 & | & 0 \\ 0 & 1 & 2 & | & 3 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

Matrices do not always come in echelon form; we will use row operations to get in this format.

Row Operations

There are 3 row operations that produce matrices that represent systems with the same solution set.

Row Operation	Notation	Example
Interchange 2 Rows	$R_1 \leftrightarrow R_3$	$\begin{bmatrix} -1 & -1 & 3 & & 3 \\ 3 & 18 & -12 & & 21 \\ 1 & 2 & -1 & & 0 \end{bmatrix}$
Multiply a Row by a non-zero number	$2R_2 \rightarrow R_2$	$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & 18 & -12 & 21 \\ -1 & -1 & 3 & 3 \end{bmatrix}$
Multiply a Row by a non-zero number and then add the product to any other row	$\frac{1}{6}R_2 + R_3 \rightarrow R_3$	$\begin{bmatrix} 1 & 2 & -1 & 0 \\ 6 & 36 & -24 & 42 \\ -1 & -1 & 3 & 3 \end{bmatrix}$

To solve a system of linear equations using matrices we would

- 1. Write system as an augmented matrix
- 2. Use row operations to get row equivalent matrix in Row Echelon Form
- 3. Use Substitution to solve for the variables. Answer solution in an ordered triple.

For Example

System of equations	3x + y - z = 9
	-x - y + 3z = 3
	x + 2y - z = 0
Rewrite system of equations as a augmented matrix	3 1 −1 9
	-1 -1 3 3
	$\begin{bmatrix} 3 & 1 & -1 & 9 \\ -1 & -1 & 3 & 3 \\ 1 & 2 & -1 & 0 \end{bmatrix}$
Use row operations to change matrix to a row	
equivalent matrix in row echelon form.	0 1 2 3
	$ \cdots \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{bmatrix} $
Rewrite matrix from row echelon form to system of	x + 2y - z = 0
equations.	y + 2z = 3
	z = 2
Solve the system using back substitution	(4,-1,2)

Solve the following System of Equations

Solve the following System of Equations	
3x + y - z = 9	2x + y - z = 10
Ex4: $-x - y + 3z = 3$	Ex5: $-x + 2y + 2z = 6$
x + 2y - z = 0	x - 3y + 2z = -15
	-

Special Cases

Just as in system of equations in 2 variables, you may encounter systems with no solution or infinitely many solutions.

Matrix is Row Echelon	System of Equation	How many solutions	Solution
Form			
Ex6:			
Ex7: $ \begin{bmatrix} 1 & 3 & -4 & 8 \\ 0 & 1 & -11 & 5 \\ 0 & 0 & 0 & 4 \end{bmatrix} $			
Ex8:			

Solve the following System of Equations

2x+4y-6z = 10Ex9: x - y + z = 4x + 2y - 3z = 7

```
-3x + y + z = 1
Ex10: 4x - 3y + 2z = 2
       5x - 3y + z = 1
```