Notes Operations on Functions

A. Combinations of functions: Given 2 functions f(x) and g(x) we can determine:

1.	Sum:	(f+g)(x) = f(x) + g(x)	add the functions together
2.	Difference:	(f-g)(x) = f(x) - g(x)	subtract the functions (distribute the minus sign)
3.	Product:	$(f \cdot g)(x) = f(x) \cdot g(x)$	multiply the functions
4.	Quotient:	$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$	divide the functions

- The <u>domain</u> of the new "combined" functions will be the intersection of the domains of f(x) and g(x), excluding any new "issues" that may arise.
 - \circ First, find the domains of f(x) and g(x), then find the intersection of those domains.
 - o The domain of the new "combined" function will be this intersection minus new "issues"

Find (f+g)(x), (f-g)(x), $(f\cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$ and their respective domains given

EX1: f(x) = x - 7 and $g(x) = x^2 + 2$

2.72.1 y (3) 33 7 and 8 (3) 33 12				
EX1a: $(f+g)(x)$	EX1b: $(f-g)(x)$			
EX1c: $(f \cdot g)(x)$	$EX1d: \left(\frac{f}{g} \right) (x)$			

EX2: $f(x) = \frac{3}{x-4}$ and $g(x) = \frac{1}{x+5}$

EX2a: $(f+g)(x)$	EX2b: $(f-g)(x)$
EX2c: $(f \cdot g)(x)$	EX2d: $\left(\frac{f}{g}\right)(x)$

B. Composition of functions: Given 2 functions f(x) and g(x) we can determine:

i. $(f \circ g)(x) = f(g(x))$ which means to replace all the x's in f(x) with the expression g(x) is equal to.

ii. $(g \circ f)(x) = g(f(x))$ which means to replace all the x's in g(x) with the expression f(x) is equal to.

Use the given functions to find $(f \circ g)(x)$ and $(g \circ f)(x)$

Ex3: $f(x) = x - 7$ and $g(x) = x^2 + 2$	Ex4: $f(x) = x^2 + 2$ and $g(x) = \sqrt{x-4}$
--	---

$$(f \circ g)(x) = \qquad (f \circ g)(x) =$$

Ex5: $f(x) = x - 7$	and	$g(x) = x^2 + 2$
$(g \circ f)(x) =$		

Ex6:
$$f(x) = x^2 + 2$$
 and $g(x) = \sqrt{x-4}$
 $(g \circ f)(x) =$