Notes Operations on Functions

A. Combinations of functions: Given 2 functions $f(x)$ and $g(x)$ we can determine:

1.	Sum:	$(f+g)(x)=f(x)+g(x)$	add the functions together
2.	Difference:	$(f-g)(x)=f(x)-g(x)$	subtract the functions (distribute the minus sign)
3.	Product:	$(f \cdot g)(x)=f(x) \cdot g(x)$	multiply the functions
4.	Quotient:	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$	divide the functions

- The domain of the new "combined" functions will be the intersection of the domains of $f(x)$ and $g(x)$, excluding any new "issues" that may arise.
- First, find the domains of $f(x)$ and $g(x)$, then find the intersection of those domains.
- The domain of the new "combined" function will be this intersection minus new "issues"

Find $(f+g)(x),(f-g)(x),(f \cdot g)(x)$, and $\left(\frac{f}{g}\right)(x)$ and their respective domains given
EX1: $f(x)=x-7$ and $g(x)=x^{2}+2$

EX1a: $(f+g)(x)$	EX1b: $(f-g)(x)$
EX1c: $(f \cdot g)(x)$	$\operatorname{EX1d}:\left(\frac{f}{g}\right)(x)$

EX2: $f(x)=\frac{3}{x-4}$ and $g(x)=\frac{1}{x+5}$

EX2a: $(f+g)(x)$	$\mathrm{EX2b}:(f-g)(x)$
$\operatorname{EX2c}:(f \cdot g)(x)$	$\operatorname{EX2d}:\left(\frac{f}{g}\right)(x)$

B. Composition of functions: Given 2 functions $f(x)$ and $g(x)$ we can determine:
i. $\quad(f \circ g)(x)=f(g(x))$ which means to replace all the $x^{\prime} \sin f(x)$ with the expression $g(x)$ is equal to.
ii. $\quad(g \circ f)(x)=g(f(x))$ which means to replace all the $x^{\prime} s$ in $g(x)$ with the expression $f(x)$ is equal to.

Use the given functions to find $(f \circ g)(x)$ and $(g \circ f)(x)$

