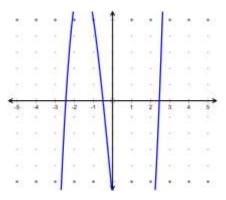
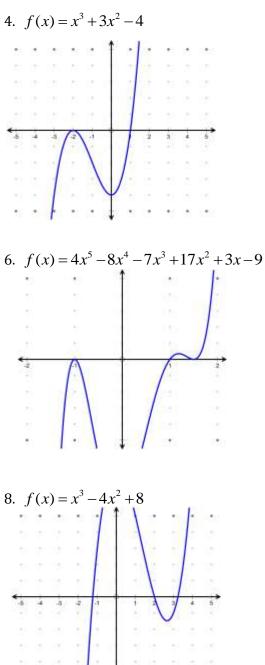
Classwork Zeros of Polynomial Functions

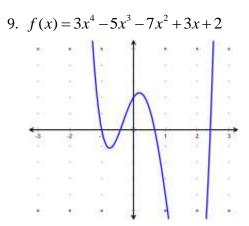
Please work all problems on a separate sheet of paper.

In exercises 1 – 2, use the Rational Zeros Theorem to list all the possible rational zeros of each polynomial function.

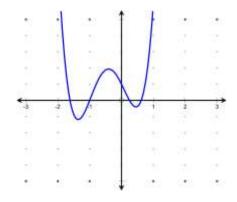

1.
$$f(x) = 3x^3 - 7x^2 + 10$$

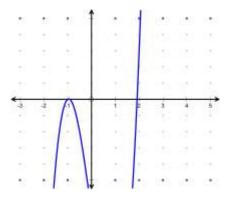
2. $f(x) = -2x^4 + 9x - 6$

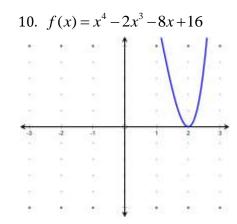

In exercises 3 – 17, use the Rational Zeros Theorem, the given graph, and synthetic division to find all zeros of each polynomial function.


- 3. $f(x) = 2x^3 x^2 2x + 1$
- 5. $f(x) = 6x^4 + x^3 25x^2 4x + 4$

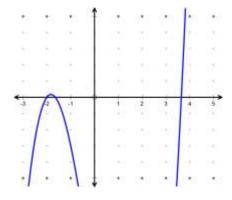
				1				
			1.1	٨	1	- 53		25.
$\mathcal{T}_{i,i}^{(1)}$	(2)		12	1	1	- 55		22.
$\mathcal{T}_{i,i}^{(1)}$			1.2	П	1.1	- 55		25.
. 53			1.00	П	1.0	- 55		12.1
			-	4				
-5-	-4	-8	1	11	1	a .	4	5
	2	1				1 13		2
	(\cdot, \cdot)		1.1		1.0	- 15		
53	12		1.12		1	- 55		$\{ i \in I \}$
51	12	25	1.1		100	- 55		0.5
\mathbf{z}	3	:*:)		+		- 55		3


7. $f(x) = 2x^3 + x^2 - 12x - 6$



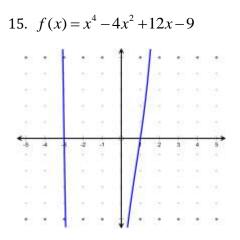


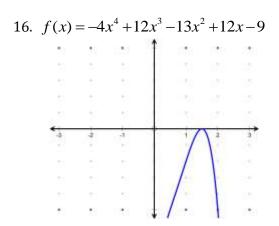
11.
$$f(x) = 4x^4 + 7x^3 - 2x^2 - 4x + 1$$



13.
$$f(x) = 4x^3 - 11x - 7$$

12.
$$f(x) = x^3 - 10x - 12$$




14. $f(x) = 2x^4 + 3x^3 + x^2 - 20x - 20$

•

•

•

17. $f(x) = x^5 - 3x^4 - 3x^3 + 9x^2 - 4x + 12$

50	•::	+ · 1			1 .
2.5	12	1 5 0	1.1	1	1 22
2.5	1	5.0	1.5	1	1 20
1.5	10	1 10 10	1.0	10	
	1	$1 \le 0$	1.01		1.1
		1 N. 10			
-4	4	1	1		4
*1			1.63		1. 20
11	1	5.0	1.25		1. 12.
52	11	5.0	125	1	1.12
2.5	10	1 2 1	1.25	1	1.55
1	1 2	•	8.882		•3 - S•3
1					

In exercise 18, a complex root is given. Find all the remaining roots, and then express the polynomial as a product of linear factors using complex numbers.

18. $x^4 - 2x^3 + 6x^2 - 8x + 8 = 0$, x = 2i is a root

In exercise 19, find a polynomial function of minimal degree with real coefficients with the given set of zeros.

19. 3, 2i, -2i