$$\sin \alpha \sin \beta = \frac{1}{2} [\cos(\alpha - \beta) - \cos(\alpha + \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$$

$$c2 = a2 + b2 - 2ab \cos C$$

$$b2 = a2 + c2 - 2ac \cos B$$

$$a2 = b2 + c2 - 2bc \cos A$$

$$K = \frac{1}{2}ab\sin C$$

$$K = \sqrt{s(s-a)(s-b)(s-c)}$$
 where $s = \frac{1}{2}(a+b+c)$

Symmetry with Respect to the Polar Axis (x-Axis)

In a polar equation, replace θ by $-\theta$. If an equivalent equation results, the graph is symmetric with respect to the polar axis.

Symmetry with Respect to the Line $\theta = \frac{\pi}{2}$ (y-Axis)

In a polar equation, replace θ by $\pi - \theta$. If an equivalent equation results, the graph is symmetric with respect to the line $\theta = \frac{\pi}{2}$.

Symmetry with Respect to the Pole (Origin)

In a polar equation, replace r by -r or θ by $\theta + \pi$. If an equivalent equation results, the graph is symmetric with respect to the pole.

$$y = \sin^{-1} x$$
 if and only if $x = \sin y$ where $-1 \le x \le 1$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
 $y = \cos^{-1} x$ if and only if $x = \cos y$ where $-1 \le x \le 1$, $0 \le y \le \pi$
 $y = \tan^{-1} x$ if and only if $x = \tan y$ where $-\infty < x < \infty$, $-\frac{\pi}{2} < y < \frac{\pi}{2}$
 $y = \sec^{-1} x$ if and only if $x = \sec y$ where $|x| \ge 1$, $0 \le y \le \pi$, $y \ne \frac{\pi}{2}$
 $y = \csc^{-1} x$ if and only if $x = \csc y$ where $|x| \ge 1$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$, $y \ne 0$
 $y = \cot^{-1} x$ if and only if $x = \cot y$ where $-\infty < x < \infty$, $0 < y < \pi$

Lines					
Description	Line passing through the pole making an angle α with the polar axis	Vertical line	Horizontal line		
Rectangular equation	$y = (\tan \alpha)x$	x = a	y = b		
Polar equation	$\theta = \alpha$	$r\cos\theta=a$	$r\sin\theta = b$		
Typical graph	γ	y	y		
	Ci	rcles			
Description	Center at the pole, radius a	Passing through the pole, tangent to the line $\theta = \frac{\pi}{2}$, center on the polar axis, radius a	Passing through the pole, tangent to the polar axis, center on the line $\theta = \frac{\pi}{2}$, radius a		
Rectangular equation	$x^2 + y^2 = a^2, a > 0$	$x^2 + y^2 = \pm 2ax$, $a > 0$	$x^2 + y^2 = \pm 2ay$, $a > 0$		
Polar equation	r=a, a>0	$r = \pm 2a \cos \theta, a > 0$	$r = \pm 2a \sin \theta$, $a > 0$		
Typical graph	y₁ a → x	y,	y + x		

Other Equations				
Name	Cardioid	Limaçon without inner loop	Limaçon with inner loop	
Polar equations	$r = a \pm a \cos \theta, a > 0$	$r = a \pm b \cos \theta$, $a > b > 0$	$r = a \pm b \cos \theta$, $b > a > 0$	
	$r = a \pm a \sin \theta, a > 0$	$r = a \pm b \sin \theta$, $a > b > 0$	$r = a \pm b \sin \theta$, $b > a > 0$	
Typical graph	y₁ → →	y ₁	y4 	
Name	Lemniscate	Rose with three petals	Rose with four petals	
Polar equations	$r^2 = a^2 \cos(2\theta), a \neq 0$	$r = a \sin(3\theta), a > 0$	$r = a\sin(2\theta), a > 0$	
	$r^2 = a^2 \sin(2\theta), a \neq 0$	$r = a\cos(3\theta), a > 0$	$r = a\cos(2\theta), a > 0$	
Typical graph	у ₁	y ₁	y₁ → -x	

$$|z| = \sqrt{x^2 + y^2}$$
 If $z = x + yi$, then its conjugate, denoted \overline{z} , is $\overline{z} = x - yi$

$$|z| = \sqrt{z \, \overline{z}} \text{ and } |z| = r$$

$$z = r(\cos \theta + i \sin \theta) \text{ giving } z = re^{i\theta}$$

Suppose $w = re^{i\theta}$ is a complex number and $n \ge 2$ is an integer. If $w \ne 0$, there are n distinct complex roots of w, given by the formula $z_k = \sqrt[n]{r} \, e^{i\left(\frac{1}{n}\right)(\theta + 2k\pi)}$, where $k = 0, 1, 2, \ldots, n-1$.

If $z = re^{i\theta}$ is a complex number, then $z^n = r^n e^{i(n\theta)}$, where $n \ge 1$ is an integer.

Suppose $z_1 = r_1 e^{i\theta_1}$ and $z_2 = r_2 e^{i\theta_2}$ are two complex numbers. Then

$$z_1 z_2 = r_1 e^{i\theta_1} \cdot r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

If $z_2 \neq 0$, then

$$\frac{z_1}{z_2} = \frac{r_1 e^{i\theta_1}}{r_2 e^{i\theta_2}} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}$$

If $\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j}$ and $\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j}$ are two vectors, the **dot product** $\mathbf{v} \cdot \mathbf{w}$ is defined as

$$\mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2$$

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

If v and w are two nonzero, nonorthogonal vectors, the vector projection of v onto w is

$$\mathbf{v}_1 = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w}$$

The decomposition of \mathbf{v} into \mathbf{v}_1 and \mathbf{v}_2 , where \mathbf{v}_1 is parallel to \mathbf{w} , and \mathbf{v}_2 is orthogonal to \mathbf{w} , is

$$\mathbf{v}_1 = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{w}\|^2} \mathbf{w} \qquad \mathbf{v}_2 = \mathbf{v} - \mathbf{v}_1$$

If $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is a nonzero vector in space, the direction angles α, β , and γ obey

$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}} = \frac{a}{\|\mathbf{v}\|} \qquad \cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}} = \frac{b}{\|\mathbf{v}\|}$$
$$\cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}} = \frac{c}{\|\mathbf{v}\|}$$

$$\mathbf{v} = \|\mathbf{v}\| \left[(\cos \alpha) \mathbf{i} + (\cos \beta) \mathbf{j} + (\cos \gamma) \mathbf{k} \right]$$

If $\mathbf{v} = a_1 \mathbf{i} + b_1 \mathbf{j} + c_1 \mathbf{k}$ and $\mathbf{w} = a_2 \mathbf{i} + b_2 \mathbf{j} + c_2 \mathbf{k}$ are two vectors in space, the **cross product** $\mathbf{v} \times \mathbf{w}$ is defined as the vector

$$\mathbf{v} \times \mathbf{w} = (b_1c_2 - b_2c_1)\mathbf{i} - (a_1c_2 - a_2c_1)\mathbf{j} + (a_1b_2 - a_2b_1)\mathbf{k}$$

$$\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix} = \begin{vmatrix} b_1 & c_1 \\ b_2 & c_2 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} \mathbf{k}$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \qquad \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \qquad \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\sin(2\theta) = 2\sin\theta\cos\theta
\cos(2\theta) = \cos^2\theta - \sin^2\theta
\cos(2\theta) = 2\cos^2\theta - 1$$

$$\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$$

$$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$$

$$\cos\frac{\alpha}{2} = \pm\sqrt{\frac{1+\cos\alpha}{2}}$$

$$\tan\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}$$
or
$$\tan\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha}$$