MATH 1324 MLM Final Exam Formula Sheet

A standard deck of 52 cards has four 13-card suits: diamonds, hearts, clubs, and spades. The diamonds and hearts are red, and the clubs and spades are black. Each 13-card suit contains cards numbered from 2 to 10, a jack, a queen, a king, and an ace. The number or letter on a card indicates its *rank*. So there are 13 ranks and 4 cards of each rank. The jack, queen, and king are called *face cards*. (The ace is *not* a face card.) Depending on the game, the ace may be counted as the lowest and/or the highest card in the suit. In traditional card games, a *hand* of cards is an unordered subset of the deck.

$$P(E) = rac{ ext{number of elements in } E}{ ext{number of elements in } S} = rac{n(E)}{n(S)}$$
 Odds for $E = rac{P(E)}{1 - P(E)} = rac{P(E)}{P(E')}$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
 Odds against $oldsymbol{E} = rac{P(E')}{P(E)}$

$$E(X) = x_1 p_1 + x_2 p_2 + \dots + x_n p_n$$
 $P(A \cap B) = P(A)P(B)$

$$P(A|B) = rac{P(A \cap B)}{P(B)}$$
 $P(A|B) = P(A)$ and $P(B|A) = P(B)$

Quadratic Formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 Vertex Formula: $x = h = \frac{-b}{2a}$; $y = k = f(h)$

Logarithmic Formulas:

If b, M, and N are positive real numbers, $b \neq 1$, and p and x are real numbers, then

1.
$$\log_b 1 = 0$$

$$2.\log_b b = 1$$

3.
$$\log_b b^x = x$$

4.
$$b^{\log_b x} = x$$
, $x > 0$

5.
$$\log_b MN = \log_b M + \log_b N$$

6.
$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

7.
$$\log_b M^p = p \log_b M$$

8.
$$\log_b M = \log_b N$$
 if and only if $M = N$

MATH 1324 MLM Final Exam Formula Sheet

In all problems involving days, use days given in MLM and round as directed in the question (make sure to not round until the end).

$$i = \frac{r}{m}$$
 $n = mt$

A = amount or future value

P = principal or present value

r =annual nominal rate (or just rate)

m = number of compounding periods per year

Simple Interest: A = P(1+rt)

Compound Interest: $A = P \left(1 + \frac{r}{m}\right)^{mt}$

Continuous Compound Interest: $A = Pe^{rt}$

$$APY = \left(1 + \frac{r}{m}\right)^m - 1$$

Future Value Annuity Formulas

$$FV = PMT \frac{(1+i)^n - 1}{i}$$

$$PMT = FV \frac{i}{(1+i)^n - 1}$$

Present Value Annuity Formulas

$$PV = PMT \frac{1 - (1+i)^{-n}}{i}$$

$$PMT = PV \frac{i}{1-(1+i)^{-n}}$$