
Chebyshev’s Theorem: The fraction of data values, x, within k standard deviations of the mean 

is at least 
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Here’s why:   

Let s  be the standard deviation for the data set, and therefore 2s  the variance.  Also, let the 

number of data values, x, with x x ks−   be 
1n , and let the number of data values, x, with 

x x ks−   be 
2n .   

It follows that 
1 2n n n+ = , and that the fraction of values, x, within k standard deviations of the 

mean is 2n

n
, while the fraction of values, x, greater than or equal to k standard deviations of the 

mean is 1n

n
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So we have that 
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standard deviations of the mean is at least 
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Example: For the data set  
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the mean is 3, and the standard deviation is 5.98.  According to Chebyshev’s Theorem, at least 
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− =  or 75% of the values must be within 2 standard deviations of the mean.  The theorem 

predicts that at least 75% of the values in the data set must fall in the interval from 

-8.96 to 14.96.  For this data set 9 out of the 10 values fall into this interval, which means that 

the actual percentage is 90%.  Chebyshev’s Theorem is correct in that 90% is greater than or 

equal to 75%, but 90% is a lot more than 75%. 


