Math 1332 Review 2(answers)

- **1.** Suppose that you reach into a bag and randomly select a piece of candy from 15 chocolates, 10 caramels, and 5 peppermints. Find the probability of:
 - a) selecting a chocolate

$$\frac{15}{15+10+5} = \frac{15}{30} = \boxed{\frac{1}{2}}$$

b) selecting a caramel or a peppermint

$$\frac{10+5}{15+10+5} = \frac{15}{30} = \boxed{\frac{1}{2}}$$

c) not selecting a peppermint

$$\frac{15+10}{15+10+5} = \frac{25}{30} = \boxed{\frac{5}{6}}$$

- **2.** In a lottery, a player selects 5 different numbers from 1-20. If these five numbers match the five numbers drawn in the lottery, the player wins the top cash prize. What is the probability of winning the top cash prize:
 - a) with one ticket?

$$\frac{1}{{}_{20}C_5} = \frac{1}{\underbrace{20!}} = \boxed{\frac{1}{15,504}}$$

b) with 100 different tickets?

$$\frac{100}{{}_{20}C_5} = \frac{100}{20!} = \boxed{\frac{100}{15,504}} = \boxed{\frac{25}{3876}}$$

c) with 15,504 different tickets?

- **3.** A political discussion group consists of 4 Republicans and 6 Democrats. If a committee of four people is selected at random, find the probability that
 - a) all four are Democrats.

$$\frac{{}_{6}C_{4}}{{}_{10}C_{4}} = \frac{\frac{6!}{2! \cdot 4!}}{\frac{10!}{6! \cdot 4!}} = \frac{6!}{2! \cdot 4!} \cdot \frac{6! \cdot 4!}{10!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2}{10 \cdot 9 \cdot 8 \cdot 7 \cdot 2} = \boxed{\frac{1}{14}}$$

b) two are Democrats and two are Republicans.

$$\frac{{}_{6}C_{2} \cdot {}_{4}C_{2}}{{}_{10}C_{4}} = \frac{\frac{6!}{4! \cdot 2!} \cdot \frac{4!}{2! \cdot 2!}}{\frac{10!}{6! \cdot 4!}} = \frac{6!}{4! \cdot 2!} \cdot \frac{4!}{2! \cdot 2!} \cdot \frac{6! \cdot 4!}{10!} = \frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 3}{10 \cdot 9 \cdot 8 \cdot 7} = \boxed{\frac{3}{7}}$$

- **4.** If the following spinner is spun, find the probability of
 - a) not stopping on 4.

b) stopping on red or yellow.

$$\frac{4}{6} = \boxed{\frac{2}{3}}$$

c) stopping on red or a number greater than 3.

$$\frac{5}{6}$$

- **5.** The odds in favor of a candidate winning an election are given at 3 to 1.
 - a) What is the probability that the candidate will win the election?

$$\frac{3}{3+1} = \boxed{\frac{3}{4}}$$

b) What is the probability that the candidate won't win the election?

$$1 - \frac{3}{4} = \boxed{\frac{1}{4}}$$

- **6.** A game is played by randomly selecting one bill from a bag that contains ten \$1 bills, five \$2 bills, three \$5 bills, one \$10 bill, and one \$100 bill. The player gets to keep the selected bill.
 - a) Complete the table of amounts of money won and their probabilities:

Amount	\$1	\$2	\$5	\$10	\$100
Probability	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{20}$	$\frac{1}{20}$	$\frac{1}{20}$

b) If the player must pay \$20 to play this game, what is the expected value of the game?

$$1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 5 \cdot \frac{3}{20} + 10 \cdot \frac{1}{20} + 100 \cdot \frac{1}{20} - 20 = \frac{10 + 10 + 15 + 10 + 100}{20} - 20$$
$$= \frac{145}{20} - 20 = \frac{145 - 400}{20} = -\frac{255}{20} = \boxed{-\$12.75}$$

7. A survey of 350 college students revealed the following:

	Public College	Private College	Total
Low income	120	20	140
Middle income	110	50	160
High income	22	28	50
Total	252	98	350

Find the probability that a randomly selected student from the survey

- a) attends a public college.
 - $\frac{252}{350} = \boxed{\frac{18}{25}}$

$$\frac{300}{350} = \boxed{\frac{6}{7}}$$

b) is not from a high income family.

c) is from a middle or high income family.

$$\frac{210}{350} = \boxed{\frac{3}{5}}$$

d) attends a private college or is from a high income family.

$$\frac{20+50+28+22}{350} = \frac{120}{350} = \boxed{\frac{12}{35}}$$

e) attends a private college and is from a low income family.

$$\frac{20}{350} = \boxed{\frac{2}{35}}$$

f) attends a public college, given that the student is from a high income family.

$$\frac{22}{50} = \boxed{\frac{11}{25}}$$

g) attends a private college, given that the student is not from a high income family.

$$\frac{70}{300} = \boxed{\frac{7}{30}}$$

- **8.** The probability of the event A occurring is .7, the probability of the event B occurring is .6, and the probability of the event $A \cap B$ occurring is .3.
 - a) Complete the following probability diagram:

b) What's the probability of the event $A \cup B$ occurring?

$$.4 + .3 + .3 = \boxed{1}$$

c) What's the probability of the event $A \cap B'$ occurring?

d) What's the probability of the event A' occurring?

e) What's the probability of the event A occurring, given that the event B will occur?

$$\frac{.3}{.6} = \boxed{.5}$$

f) Are the events A and B independent?

No, since
$$P(A|B) = .5 \ne .7 = P(A)$$
.

g) Are the events A and B mutually exclusive?

No, since
$$P(A \cap B) \neq 0$$
.

- **9.** A box contains 5 red marbles, 6 green marbles, and 9 yellow marbles. You select one marble at random and do not replace it. Then you randomly select a second marble.
 - a) Complete the following probability tree:

b) Find the probability that both marbles selected are green.

$$\frac{3}{10} \cdot \frac{5}{19} = \boxed{\frac{3}{38}}$$

c) Find the probability that the second marble selected is red.

$$\frac{1}{4} \cdot \frac{4}{19} + \frac{3}{10} \cdot \frac{5}{19} + \frac{9}{20} \cdot \frac{5}{19} = \frac{1}{19} + \frac{3}{38} + \frac{9}{76} = \frac{19}{76} = \boxed{\frac{1}{4}}$$

d) Find the probability that the first marble selected was red given that the second marble selected is yellow.

$$\frac{\frac{1}{4} \cdot \frac{9}{19}}{\frac{1}{4} \cdot \frac{9}{19} + \frac{3}{10} \cdot \frac{9}{19} + \frac{9}{20} \cdot \frac{8}{19}} = \frac{\frac{9}{76}}{\frac{9}{76} + \frac{27}{190} + \frac{18}{95}} = \frac{\frac{9}{76}}{\frac{9}{20}} = \frac{9}{76} \cdot \frac{20}{9} = \frac{5}{19}$$

- **10.** A sample of the amount of time spent studying per week by 10 college students resulted in the following data set: $\{8,10,9,7,9,8,7,6,8,7\}$
 - a) Complete the frequency distribution for the data set:

X	frequency		
6	1		
7	3		
8	3		
9	2		
10	1		
Total	10		

b) Complete the histogram for the data set:

c) Complete the frequency polygon for the data set:

11. Complete the stem and leaf plot for the following data set: $\{21,45,39,21,16,14,12,28,30,47\}$.

12. Find the mean, median, mode, and the midrange for the data values in the following stem and leaf plot:

The median is the sixth value, so median $= \boxed{21}$.

mode =
$$\boxed{21}$$
.
 $midrange = \frac{11+48}{2} = \frac{59}{2} = \boxed{29.5}$.

13. Find the mean, median, mode, and the midrange for the data values in the following frequency distribution:

	x	frequency	
	1	2	
	2	5	
	3	3	
	4	2	
	Total	12	
	$\cdot 1 + 5 \cdot 2$	$2 + 3 \cdot 3 + 2 \cdot 4$	$=\frac{29}{2}\approx \boxed{2.4}$
mean = –		12	$=\frac{1}{12}\approx 2.4$

The median is the average of the sixth and seventh values, so median $=\frac{2+2}{2}=\boxed{2}$.

mode =
$$\boxed{2}$$
.
 $midrange = \frac{1+4}{2} = \frac{5}{2} = \boxed{2.5}$.