Financial Formulas

Simple Interest: P is the present value or loan amount, A is the future value or total amount, r is the annual interest rate as a decimal, t is the time in years, and I is the simple interest earned.

Interest	Future Value	Present Value	Interest Rate	Time
		$P = \frac{A}{1 + rt}$	$r = \frac{I}{Pt}$	$t = \frac{I}{Pr}$
I = Prt	A = P(1+rt)	OR	OR	OR
		$P = \frac{I}{rt}$	$r = \frac{A - P}{Pt}$	$t = \frac{A - P}{Pr}$

Compound Interest: P is the present value or loan amount, A is the future value or total amount, r is the annual nominal interest rate as a decimal, m is the number of compounding periods per year, n is the total number of compounding periods, I is the compound interest earned, t is the time in years, and t is

the interest rate per compounding period.

Interest Rate per Period	Future Value	Interest Earned	Present Value	Effective Rate
$i = \frac{r}{m}$	$A = P(1+i)^n$	$I = P\Big[\big(1+i\big)^n - 1\Big]$ OR	$P = \frac{A}{\left(1+i\right)^n}$	
OR	OR	OR	OR	$r_{\text{effective}} = \left(1 + \frac{r}{m}\right)^m - 1$
$i = \sqrt[n]{\frac{A}{P}} - 1$	$A = P\left(1 + \frac{r}{m}\right)^{mt}$	\mathbf{OR} $I = P\left[\left(1 + \frac{r}{m}\right)^{mt} - 1\right]$	$P = \frac{A}{\left(1 + \frac{r}{m}\right)^{mt}}$	(,
Number of				
Compounding	Time in Years			
Periods				
$n = \frac{log\left(\frac{A}{P}\right)}{log\left(1+i\right)}$	$t = \frac{log\left(\frac{A}{P}\right)}{m \cdot log\left(1+i\right)}$			

Ordinary Annuity: *Pmt* is the payment, *FV* is the future value, *PV* is the present value, *i* is the interest rate per period as a decimal, *n* is the total number of payments, *m* is the number of payments per year, and *t* is the amount of time in years.

Future Value	Payment or Sinking Fund	Present Value
$FV = Pmt \left[\frac{\left(1+i\right)^n - 1}{i} \right]$	$Pmt = FV \left[\frac{i}{\left(1+i\right)^{n} - 1} \right]$	$PV = Pmt \left[\frac{1 - \left(1 + i\right)^{-n}}{i} \right]$
Total Number of Payments	Time in Years	
$n = \frac{log\left(\frac{FV}{Pmt} \cdot i + 1\right)}{log\left(1 + i\right)}$	$t = \frac{log\left(\frac{FV}{Pmt} \cdot i + 1\right)}{m \cdot log\left(1 + i\right)}$	

Amortization: PV is the loan amount, Pmt is the payment, Bal is the approximate remaining balance on the loan, i is the interest rate per period as a decimal, n is the total number of payments, IPmt is the approximate interest portion of a payment, PPmt is the approximate principal portion of a payment, I is the approximate total interest paid, m is the number of payments per year, t is the time in years, and k is a payment number.

Payment	Approximate Remaining Balance after the $k^{ ext{th}}$ Payment	Approximate Interest Portion of the k^{th} Payment
$Pmt = PV \left[\frac{i}{1 - \left(1 + i\right)^{-n}} \right]$	$Bal = \underbrace{Pmt}_{\text{unrounded}} \left[\frac{1 - (1+i)^{k-n}}{i} \right]$ \mathbf{OR}	$IPmt = \underbrace{Pmt}_{\text{unrounded}} \left[1 - \left(1 + i \right)^{k-1-n} \right]$ OR
$\left[1-(1+i)^{-n}\right]$	$Bal = PV \left[\frac{1 - (1+i)^{k-n}}{1 - (1+i)^{-n}} \right]$	$IPmt = i \cdot PV \left[\frac{1 - \left(1 + i\right)^{k - 1 - n}}{1 - \left(1 + i\right)^{-n}} \right]$

Approximate Principal Portion of the k^{th} Payment	Loan Amount	Approximate Number of Payments
$PPmt = Pmt - \underbrace{Pmt}_{\text{unrounded}} \left[1 - \left(1 + i \right)^{k-1-n} \right]$ \mathbf{OR} $PPmt = i \cdot PV \left[\frac{\left(1 + i \right)^{k-1-n}}{1 - \left(1 + i \right)^{-n}} \right]$	$PV = Pmt \left[\frac{1 - (1+i)^{-n}}{i} \right]$	$n = \frac{log\left(\frac{Pmt}{Pmt - PV \cdot i}\right)}{log\left(1 + i\right)}$

Approximate Time in Years	Approximate Total Interest Paid	Approximate Payment Number for a Remaining Balance
$t = \frac{log\left(\frac{Pmt}{Pmt - PV \cdot i}\right)}{m \cdot log\left(1 + i\right)}$	$I = n \cdot Pmt - PV$ \mathbf{OR} $I = PV \left[\frac{ni}{1 - (1+i)^{-n}} - 1 \right]$	$k = n + \frac{log\left(1 - \frac{Bal \cdot i}{\underbrace{Pmt}_{unrounded}}\right)}{log\left(1 + i\right)}$