Graphing Polynomial Functions:

The Leading Coefficient Test and End Behavior:

For an n^{th} – degree polynomial function $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with $a_n \neq 0$,

If *n* is even and $a_n > 0$, then

-2

Determine the end behavior of the following polynomial functions.

1.
$$f(x) = 4x - x^3$$

Left: up

Right: down

2.
$$f(x) = 2x^4 + 12x - 4$$
 Left: up

Right: up

3.
$$f(x) = x^3 + 2x^2 - 8x$$
 Left: down

Right: up

4.
$$f(x) = 4x - x^6$$

Left: down

Right: down

5.
$$f(x) = x^2(x-3)$$

Left: down

Right: up

6.
$$f(x) = -2(x+2)(x-2)^3$$

Left: down

Right: down

7.
$$f(x) = (x+1)^2 (x-2)^2$$

Left: up

Right: up

8.
$$f(x) = -2(x+2)^2(x-2)^3$$

Left: up

Right: down

Behavior at the x-intercepts:

If $(x-c)^k$ is the highest power of (x-c) that is a factor of f(x), with c a real number, then

If k is even, then the graph touches the x-axis at c but doesn't cross the axis.

If k is 1, then the graph crosses the x-axis at c with a non-zero angle.

If k is odd and greater than 1, then the graph crosses the x-axis at c with a zero angle(flat).

Steps for sketching graphs of polynomial functions:

- 1. Determine the end behavior, and indicate it on the graph with arrows.
- 2. Find all the real zeros(x-intercepts) of f(x), and indicate them on the graph with points.
- 3. Find the y-intercept(by setting x to zero), and indicate it on the graph with a point.
- 4. Use the end behavior and x-intercept behavior to connect the previous points and arrows into a reasonable graph.

The goal in sketching the graph of a polynomial function is to plot as few points as possible(the *x* and *y* intercepts), and use the end behavior and *x*-intercept behavior to capture the qualitative behavior of the graph. Don't worry about the vertical scaling, just produce a reasonably connected graph.

Sketch the graphs of the following polynomial functions.

1.
$$f(x) = \frac{1}{27}(x+4)(x-3)^3$$
 $f(0) = -4$, so the y-intercept is -4.

2.
$$f(x) = x^2(x-2)$$

3. $f(x) = -(x+2)(x-2)^3$ f(0) = 16, so the y-intercept is 16.

4.
$$f(x) = -(x^2 - 2)x^3 = -x^3(x - \sqrt{2})(x + \sqrt{2})$$
 $f(0) = 0$, so the y-intercept is 0.

5.
$$f(x) = x - x^3 = -x(x^2 - 1) = -x(x - 1)(x + 1)$$
 $f(0) = 0$, so the y-intercept is 0.

6.
$$f(x) = x^3 + 2x^2 - 8x = x(x^2 + 2x - 8) = x(x + 4)(x - 2)$$

7.
$$f(x) = 2x^4 + 12x^3 - 8x^2 - 48x = 2x^3(x+6) - 8x(x+6)$$

= $2x(x+6)(x^2-4)$
= $2x(x+6)(x-2)(x+2)$

8.
$$f(x) = x^2 - x^4 = -x^2(x^2 - 1) = -x^2(x - 1)(x + 1)$$

