Logarithmic Functions:

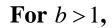
A function of the form $f(x) = log_b x$ with b > 0 and $b \ne 1$ is a called a logarithmic function with base b. It is the inverse of the exponential function b^x , so we can get the graph of a logarithmic function by reflecting the graph of the corresponding exponential function about the line y = x.

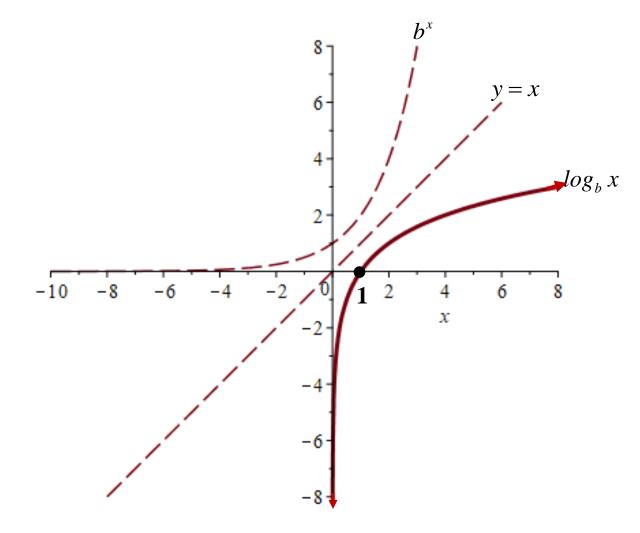
Just like the exponential functions, the bases separate into two categories:

b > 1

And

0 < b < 1





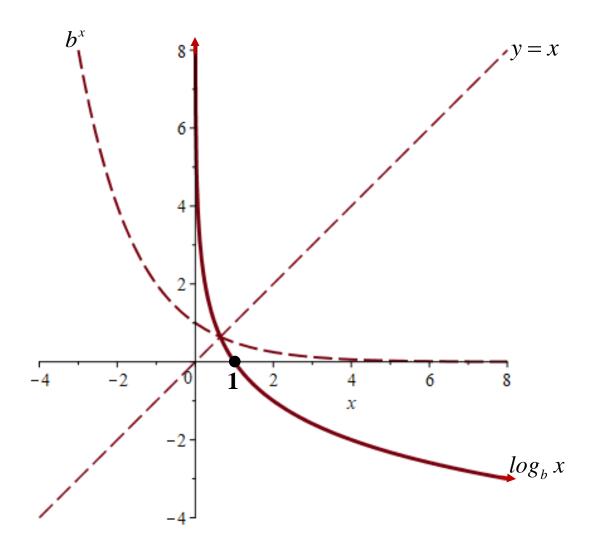
Domain: $(0, \infty)$

Vertical Asymptote: x = 0 from the right

Range: $(-\infty,\infty)$

Increasing: $(0, \infty)$

For 0 < b < 1,



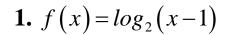
Domain: $(0, \infty)$

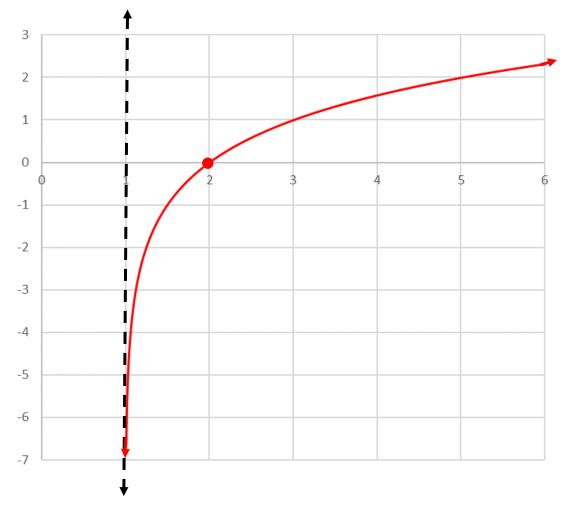
Vertical Asymptote: x = 0 from the right

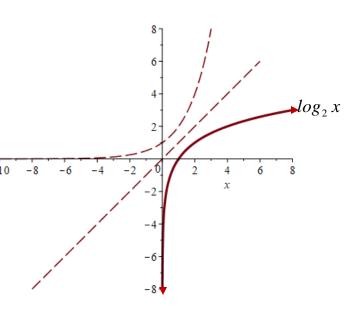
Range: $(-\infty,\infty)$

Decreasing: $(0, \infty)$

Transformations of Logarithmic Functions:



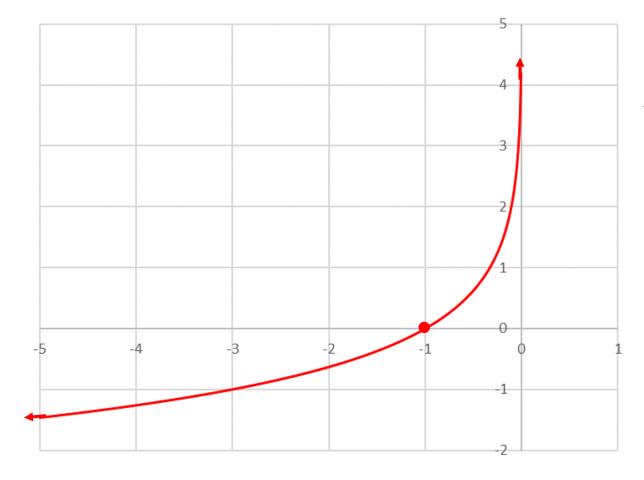


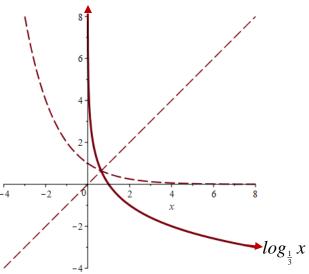


Domain: $(1, \infty)$

Range: $(-\infty, \infty)$

2.
$$f(x) = log_{\frac{1}{3}}(-x)$$

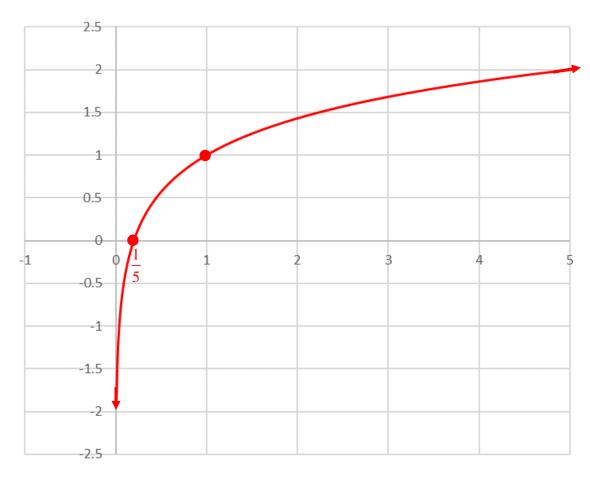


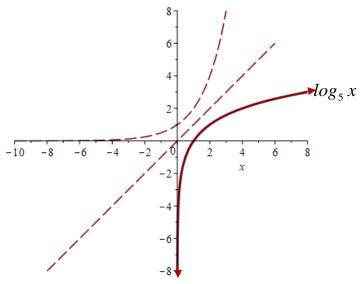


Domain: $\left(-\infty,0\right)$

Range: $(-\infty, \infty)$

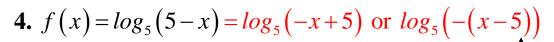
3.
$$f(x) = log_5 x + 1$$

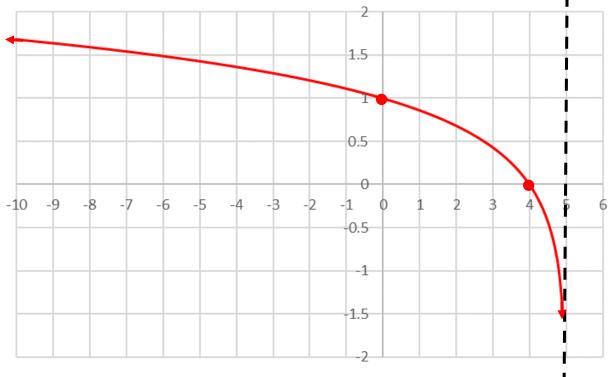


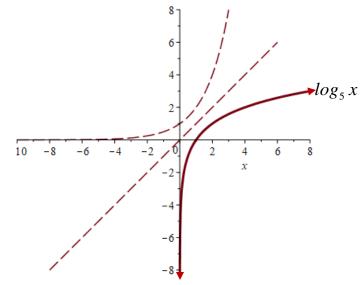


Domain: $(0, \infty)$

Range: $(-\infty, \infty)$







Domain: $\left(-\infty,5\right)$

Range: $\left(-\infty,\infty\right)$

Logarithms are actually exponents. $log_b x$ is the power or exponent that you raise b to in order to get x.

1

2

3.
$$log_2 \frac{1}{4}$$

-2

4.
$$log_{\frac{1}{2}} 8$$

-3

5.
$$log_6 \sqrt{6}$$

$$\sqrt{6} = 6^{\frac{1}{2}} \Rightarrow \boxed{\frac{1}{2}}$$

6.
$$log_5 \sqrt[3]{25}$$

$$\sqrt[3]{25} = 5^{\frac{2}{3}} \Rightarrow \boxed{\frac{2}{3}}$$

7.
$$log_{\sqrt{3}} 9$$

4

Logarithmic and Exponential Form of Equations:

Logarithmic Form:

$$3 = log_{10} 1,000$$

Exponentiate to get the exponential form.

$$10^3 = 1,000$$

Exponential Form:

$$3^4 = 81$$

Apply a logarithmic function to get the logarithmic form.

$$4 = \log_3 81$$

An Important Logarithmic Property:

$$log_b(b^x) = x$$
; for all x
 $b^{log_b x} = x$; for $x > 0$

Solve the following basic logarithmic equations:

1.
$$log_5 x = 2$$

$$\Rightarrow 5^{\log_5 x} = 5^2 \Rightarrow x = \boxed{25}$$

2.
$$log_3(3x-2)=3$$

$$\Rightarrow 3^{\log_3(3x-2)} = 3^3 \Rightarrow 3x - 2 = 27$$

$$\Rightarrow 3x = 29 \Rightarrow x = \boxed{\frac{29}{3}}$$

3.
$$log_x 4 = 2$$

$$\Rightarrow x^{\log_x 4} = x^2 \Rightarrow x^2 = 4$$

$$\Rightarrow x = \pm 2 \Rightarrow x = \boxed{2}$$

The base must be positive.

4.
$$log_4 64 = x$$

$$log_4 64 = x \Rightarrow x = \boxed{3}$$

5.
$$log_3(x^2+1)=2$$

$$\Rightarrow 3^{\log_3(x^2+1)} = 3^2 \Rightarrow x^2 + 1 = 9$$

$$\Rightarrow x^2 = 8 \Rightarrow x = \boxed{\pm \sqrt{8}}$$

6.
$$log_5(x^2+4x+4)=2$$

$$\Rightarrow 5^{\log_5(x^2+4x+4)} = 5^2 \Rightarrow x^2+4x+4=25$$

$$\Rightarrow x^2 + 4x - 21 = 0 \Rightarrow (x+7)(x-3) = 0$$

$$\Rightarrow x = \boxed{-7,3}$$