Applications of Systems of Linear Equations:

1. Animals in an experiment are to be fed a strict diet. Each animal should receive 20 grams of protein and 6 grams of fat. The lab tech is able to purchase two food mixes: Mix A has 10% protein and 6% fat; Mix B has 20% protein and 2% fat. How many grams of each mix should be used to get the right diet for one animal? Let's set it up as a linear system of equations:

Let A = the number of grams of Mix A, and B = the number of grams of Mix B.

$$.10A + .20B = 20$$
 (Protein Equation)
 $.06A + .02B = 6$ (Fat Equation)

Let's solve the system using Gaussian Elimination.

$$\begin{bmatrix} .10 & .20 & 20 \\ .06 & .02 & 6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 200 \\ 6 & 2 & 600 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 200 \\ 0 & -10 & -600 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 200 \\ 0 & 1 & 60 \end{bmatrix}$$

$$\xrightarrow{10R_1 \rightarrow R_1 \atop 100R_2 \rightarrow R_2}$$

B=60 and A+120=200, so B=60 and A=80. So the answer to the question is 80 grams of Mix A and 60 grams of Mix B.

2. A company wants to lease a fleet of 12 airplanes with a combined carrying capacity of 220 passengers. The three available types of planes carry 10, 15, and 20 passengers, respectively, and the leasing costs are \$8,000, \$14,000, and \$16,000, respectively. What's the cheapest way for the company to accomplish its goal?

First, we'll figure out all the different combinations of three types of airplanes the company can lease by solving a linear system of equations:

Let x_1 = the number of 10 passenger planes, x_2 = the number of 15 passenger planes, and x_3 = the number of 20 passenger planes.

$$x_1 + x_2 + x_3 = 12$$
 (Plane Equation)
 $10x_1 + 15x_2 + 20x_3 = 220$ (Passenger Equation)

Let's solve this system using Gauss-Jordan Elimination.

$$\begin{bmatrix} 1 & 1 & 1 & | & 12 \\ 10 & 15 & 20 & | & 220 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & | & 12 \\ 0 & 5 & 10 & | & 100 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & | & 12 \\ 0 & 1 & 2 & | & 20 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & | & -8 \\ 0 & 1 & 2 & | & 20 \end{bmatrix}$$

So the system has infinitely many solutions given by $x_1 = x_3 - 8$, $x_2 = 20 - 2x_3$, $x_3 = x_3$; where x_3 is any real number. But, x_1, x_2 , and x_3 are numbers of airplanes, so they have to be nonnegative whole numbers.

$$x_3 - 8 \ge 0$$

So $20 - 2x_3 \ge 0$ and x_3 must be a whole number. This means that $x_3 \le 10$, and if $0 \le x_3$

you combine them you get $8 \le x_3 \le 10$ and x_3 is a whole number. So instead of infinitely many solutions, we actually get three of them because x_3 must be 8, 9 or 10. So the three combinations of airplanes that they can lease are $x_1 = 0, x_2 = 4, x_3 = 8$

and $x_1 = 1, x_2 = 2, x_3 = 9$ and $x_1 = 2, x_2 = 0, x_3 = 10$. Now we have to determine which of these three combinations is the cheapest.

$$x_1 = 0, x_2 = 4, x_3 = 8$$
; $cost = $184,000$
 $x_1 = 1, x_2 = 2, x_3 = 9$; $cost = $180,000$
 $x_1 = 2, x_2 = 0, x_3 = 10$; $cost = $176,000$

So the cheapest way for the company to achieve its goal is to lease 2 of the 10 passenger planes and 10 of the 20 passenger planes.

3. The diagram shows the traffic flow at the intersections of four one-way streets.

In order to have smooth traffic flow, the number of cars entering an intersection must equal the number of cars leaving an intersection. This leads to four equations-one for each intersection:

Intersection	Equation
Norwood and Warren	$x_1 + x_2 = 1200$
Bradford and Warren	$x_2 + x_3 = 1800$
Bradford and Parkland	$x_3 + x_4 = 2400$
Norwood and Parkland	$x_1 + x_4 = 1800$

Here's the augmented matrix corresponding to the system of linear equations.

[1	1	0	0 1200]
0	1	1	0 1800
0	0	1	1 2400
1	0	0	1 1800]

The result of Gauss-Jordan Elimination is the following matrix:

$$\begin{bmatrix}
1 & 0 & 0 & 1 & 1800 \\
0 & 1 & 0 & -1 & -600 \\
0 & 0 & 1 & 1 & 2400 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

So the mathematical solution is

 $x_4 = x_4, x_3 = 2400 - x_4, x_2 = x_4 - 600, x_1 = 1800 - x_4, \text{ where } x_4 \text{ is any real } \#$

Since the traffic flows must be nonnegative, it must be that

$$0 \le x_4$$

$$x_4 \le 2400$$

$$600 \le x_4$$

$$x_4 \le 1800$$

In order for all of these inequalities to be true, it must be that $600 \le x_4 \le 1800$. So the true solution of the system is

$$x_4 = x_4, x_3 = 2400 - x_4, x_2 = x_4 - 600, x_1 = 1800 - x_4, \text{ where } 600 \le x_4 \le 1800.$$

Here are the maximum and minimum traffic flows in the network:

Street Section	Minimum Flow	Maximum Flow
Norwood between Parkland and Warren, x_1	0	1200
Warren between Bradford and Norwood, x_2	0	1200
Bradford between Warren and Parkland, x_3	600	1800
Parkland between Bradford and Norwood, x_4	600	1800

If traffic on Warren between Bradford and Norwood is restricted to 100 cars per hour due to construction, here's the traffic flow in the rest of the system.

$$x_2 = x_4 - 600 = 100 \Rightarrow x_4 = 700$$

 $x_3 = 2400 - 700 = 1700, x_1 = 1800 - 700 = 1100$

If the following tolls are charged, let's determine the least and greatest amount of money generated from the tolls per hour.

Street Section	
Norwood between Parkland and Warren, x_1	\$.25
Warren between Bradford and Norwood, x_2	\$.50
Bradford between Warren and Parkland, x_3	\$.20
Parkland between Bradford and Norwood, x_4	\$.15

The total toll per hour in cents is

$$25x_1 + 50x_2 + 20x_3 + 15x_4$$

$$= 25(1800 - x_4) + 50(x_4 - 600) + 20(2400 - x_4) + 15x_4$$

$$= 20x_4 + 63000; 600 \le x_4 \le 1800$$

So the maximum toll amount will occur for $x_4 = 1800$, giving a maximum toll amount of 99,000 cents or \$990, and the minimum toll amount will occur for $x_4 = 600$, giving a minimum toll amount of 75,000 cents or \$750.