Regular Markov Chains:

If all the entries of the transition matrix for a Markov chain are positive or all the entries of a power of the transition matrix are positive, then the associated Markov chain is said to be regular.

Examples:

$$P = \begin{bmatrix} .1 & .9 \\ .3 & .7 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 1 \\ .3 & .7 \end{bmatrix}$$

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{bmatrix}$$

Stationary Matrices for Markov Chains:

The state matrix $S = \begin{bmatrix} s_1 & s_2 & \cdots & s_n \end{bmatrix}$ for a Markov chain with transition matrix P, is

WHAT GOES AROUND

COMES AROUND

a stationary matrix if SP = S.

Examples:

Is $S = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ a stationary matrix for the Markov chain with transition matrix

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$
?

Is $S = \begin{bmatrix} 1 & 0 \end{bmatrix}$ a stationary matrix for the Markov chain with transition matrix

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$
?

Find a stationary matrix for the Markov chain with transition matrix $P = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & \frac{1}{4} \end{bmatrix}$?

Properties of Regular Markov Chains:

If P is the transition matrix of a regular Markov chain, then

- 1) There is a unique stationary matrix $S = \begin{bmatrix} s_1 & s_2 & \cdots & s_n \end{bmatrix}$ that can be found by solving the system of equations resulting from $SP = S, s_1 + s_2 + \cdots + s_n = 1$.
- 2) Given any initial-state matrix S_0 , the state matrices in the resulting Markov chain, S_k 's, will approach the unique stationary matrix S, as $k \to \infty$.
- 3) The powers of the transition matrix, P^{k} 's, will approach a limiting matrix \overline{P} , as $k \to \infty$, where each row of \overline{P} is the unique stationary matrix, S.

So for regular Markov chains, there is a unique distribution of the population so that no matter what the initial-state is, the Markov chain will evolve to this unique distribution as the steps continue.

Examples:

1. Demonstrate the properties for a regular Markov chain with transition matrix,

$$P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

$$\begin{bmatrix} s_1 & s_2 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix}$$
$$s_1 + s_2 = 1$$

$$\frac{\frac{3}{4}s_1 + \frac{1}{2}s_2 = s_1}{\frac{1}{4}s_1 + \frac{1}{2}s_2 = s_2}$$
$$s_1 + s_2 = 1$$

$$-\frac{1}{4}s_1 + \frac{1}{2}s_2 = 0$$
$$\frac{1}{4}s_1 - \frac{1}{2}s_2 = 0$$
$$s_1 + s_2 = 1$$

The first two equations are equivalent, so we just have to solve the system

$$\frac{1}{4}s_1 - \frac{1}{2}s_2 = 0$$
$$s_1 + s_2 = 1$$

Multiplying the first equation by 2 and adding to the second, we get

$$\frac{3}{2}s_1 = 1 \Rightarrow s_1 = \frac{2}{3} \Rightarrow s_2 = \frac{1}{3}$$
, so the unique stationary matrix is $S = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$.

For $S_0 = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix}$, here's the beginning of the resulting Markov chain:

S_0	$\left[\frac{1}{4}\right]$	$\frac{3}{4}$
S_1	[.5625	.4375]
S_2	[.640625	.359375]
S_3	[.660156	.339844]
S_4	[.665039	.334961]
S_5	[.666260	.333740]

You can see the Markov chain heading toward the stationary matrix $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$.

For $S_0 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$, here's the beginning of the resulting Markov chain:

S_0	$\left[\frac{1}{2}\right]$	$\frac{1}{2}$
S_1	[.625	.375]
S_2	[.65625	.34375]
S_3	[.664063	.335938]
S_4	[.666016	.333984]
S_5	[.666504	.333496]

You can see the Markov chain heading toward the stationary matrix $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$.

For $S_0 = \begin{bmatrix} 1 & 0 \end{bmatrix}$, here's the beginning of the resulting Markov chain:

S_0	[1	0]
S_1	[.75	.25]
S_2	[.6875	.3125]
S_3	[.671875	.328125]
S_4	[.667969	.332031]
S_5	[.666992	.333008]

You can see the Markov chain heading toward the stationary matrix $\begin{bmatrix} \frac{2}{3} & \frac{1}{3} \end{bmatrix}$.

Here are the powers of $P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$:

$$P^2 = \begin{bmatrix} .6875 & .3125 \\ .625 & .375 \end{bmatrix}$$

$$P^3 = \begin{bmatrix} .671875 & .328125 \\ .65625 & .34375 \end{bmatrix}$$

$$P^4 = \begin{bmatrix} .667969 & .332031 \\ .664063 & .335938 \end{bmatrix}$$

$$P^5 = \begin{bmatrix} .666992 & .333008 \\ .666016 & .333984 \end{bmatrix}$$

$$P^6 = \begin{bmatrix} .666748 & .333252 \\ .666504 & .333496 \end{bmatrix}$$

$$P^7 = \begin{bmatrix} .666687 & .333313 \\ .666626 & .333374 \end{bmatrix}$$

You can see the powers of the transition matrix heading toward the limiting

$$\mathbf{matrix} \begin{bmatrix} \frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}.$$

2. Find the stationary matrix and the limiting matrix \bar{P} for the Markov chain with transition matrix, $P = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$. Determine the long-term behavior of the Markov chain with initial-state of $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$.

$$\begin{bmatrix} s_1 & s_2 \end{bmatrix} \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix} \\
s_1 + s_2 = 1 \\
\frac{3}{4} s_1 + \frac{2}{3} s_2 = s_1 \\
\frac{1}{4} s_1 + \frac{1}{3} s_2 = s_2 \\
s_1 + s_2 = 1 \\
-\frac{1}{4} s_1 + \frac{2}{3} s_2 = 0 \\
\frac{1}{4} s_1 - \frac{2}{3} s_2 = 0 \\
s_1 + s_2 = 1$$

3. Find the stationary matrix and the limiting matrix \overline{P} for the Markov chain with

transition matrix, $P = \begin{bmatrix} .5 & .1 & .4 \\ .3 & .7 & 0 \\ 0 & .6 & .4 \end{bmatrix}$. Determine the long-term behavior of the

Markov chain with initial-state of $\begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$.

$$\begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix} \begin{bmatrix} .5 & .1 & .4 \\ .3 & .7 & 0 \\ 0 & .6 & .4 \end{bmatrix} = \begin{bmatrix} s_1 & s_2 & s_3 \end{bmatrix}$$

$$s_1 + s_2 + s_3 = 1$$

$$s_1 + s_2 + s_3 = 1$$

$$-.5s_1 + .3s_2 = 0$$

$$.1s_1 - .3s_2 + .6s_3 = 0$$

$$.4s_1 - .6s_3 = 0$$

$$\Rightarrow s_2 = \frac{5}{3}s_1, s_3 = \frac{2}{3}s_1 \Rightarrow s_1 + \frac{5}{3}s_1 + \frac{2}{3}s_1 = 1 \Rightarrow$$

For the Markov chain with transition matrix $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ is a stationary matrix,

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
. Notice that

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^3 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \dots,$$
 which means that the powers

of the transition matrix don't settle on a particular matrix. Also notice that if

$$S_0 = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix}$$
, then $S_1 = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \end{bmatrix}$, $S_2 = \begin{bmatrix} \frac{3}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \end{bmatrix}$,..., which

means that this Markov Chain doesn't evolve toward the stationary matrix $\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$. Do these observations contradict the properties of a regular Markov chain?

Application of Regular Markov Chains:

A new rapid transit system has just started operating. In the first month of operation, it is found that 25% of commuters use the system, while 75% still travel by car. The following transition matrix was determined by examining data from other systems.

$$R$$
 C

$$\begin{bmatrix} R & .8 & .2 \\ .3 & .7 \end{bmatrix} = P$$
, where R represents using rapid transit and C represents using a car.

The time step in this example is 1 month.

1) What's the initial-state matrix?

2) What percentage of commuters will be using rapid transit after 1 month?

$$S_1 = \begin{bmatrix} .25 & .75 \end{bmatrix} \begin{bmatrix} .8 & .2 \\ .3 & .7 \end{bmatrix} =$$

3) What percentage of commuters will be using rapid transit after 2 months?

$$S_2 = \begin{bmatrix} .425 & .575 \end{bmatrix} \begin{bmatrix} .8 & .2 \\ .3 & .7 \end{bmatrix} =$$

4) Find the percentage of commuters using each type of transportation after the new system has been in service for a long time.

$$\begin{bmatrix} s_1 & s_2 \end{bmatrix} \begin{bmatrix} .8 & .2 \\ .3 & .7 \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \end{bmatrix}
s_1 + s_2 = 1
.8s_1 + .3s_2 = s_1
.2s_1 + .7s_2 = s_2
s_1 + s_2 = 1
-.2s_1 + .3s_2 = 0
.2s_1 - .3s_2 = 0
s_1 + s_2 = 1$$