
Regular Markov Chains: 

If all the entries of the transition matrix for a Markov chain are positive or all the 

entries of a power of the transition matrix are positive, then the associated Markov 

chain is said to be regular.  

Examples: 
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Stationary Matrices for Markov Chains: 

The state matrix  1 2 nS s s s=  for a Markov chain with transition matrix P, is 

a stationary matrix if SP S= . 

 

Examples: 
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Is  1 0S =  a stationary matrix for the Markov chain with transition matrix 
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Properties of Regular Markov Chains: 

If P is the transition matrix of a regular Markov chain, then 

1) There is a unique stationary matrix  1 2 nS s s s=  that can be found by 

solving the system of equations resulting from 1 2, 1nSP S s s s= + + + = . 

 

2) Given any initial-state matrix 0S , the state matrices in the resulting Markov chain, 

'kS s , will approach the unique stationary matrix S, as k → . 

 

3) The powers of the transition matrix, 'kP s , will approach a limiting matrix P , as 

k → , where each row of P  is the unique stationary matrix, S. 

 

So for regular Markov chains, there is a unique distribution of the population so that 

no matter what the initial-state is, the Markov chain will evolve to this unique 

distribution as the steps continue. 



Examples: 

1. Demonstrate the properties for a regular Markov chain with transition matrix, 
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The first two equations are equivalent, so we just have to solve the system 
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Multiplying the first equation by 2 and adding to the second, we get 

 3 2 1
1 1 22 3 3

1s s s=  =  = , so the unique stationary matrix is 2 1
3 3

S =   . 

 

For 31
0 4 4

S =   , here’s the beginning of the resulting Markov chain: 

 

0S  31
4 4   

1S   .5625 .4375  

2S   .640625 .359375  

3S   .660156 .339844  

4S   .665039 .334961  

5S   .666260 .333740  

You can see the Markov chain heading 

toward the stationary matrix 2 1
3 3  . 



For  1 1
0 2 2

S = , here’s the beginning of the resulting Markov chain: 
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1S   .625 .375  

2S   .65625 .34375  

3S   .664063 .335938  

4S   .666016 .333984  

5S   .666504 .333496  

 

 

 

 

 

 

 

You can see the Markov chain heading 

toward the stationary matrix 2 1
3 3  . 



For  0 1 0S = , here’s the beginning of the resulting Markov chain: 

 

0S   1 0  

1S   .75 .25  

2S   .6875 .3125  

3S   .671875 .328125  

4S   .667969 .332031  

5S   .666992 .333008  
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You can see the Markov chain heading 

toward the stationary matrix 2 1
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You can see the powers of the transition 
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2. Find the stationary matrix and the limiting matrix P  for the Markov chain with 

transition matrix, 
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3. Find the stationary matrix and the limiting matrix P  for the Markov chain with 

transition matrix, 
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For the Markov chain with transition matrix 
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means that this Markov Chain doesn’t evolve toward the stationary matrix  1 1
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Do these observations contradict the properties of a regular Markov chain? 

 

 

 



Application of Regular Markov Chains: 

A new rapid transit system has just started operating.  In the first month of operation, 

it is found that 25% of commuters use the system, while 75% still travel by car.  The 

following transition matrix was determined by examining data from other systems. 
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The time step in this example is 1 month.  

 

1) What’s the initial-state matrix? 

 

 

 

 

 



2) What percentage of commuters will be using rapid transit after 1 month? 
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3) What percentage of commuters will be using rapid transit after 2 months? 
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4) Find the percentage of commuters using each type of transportation after the new 

system has been in service for a long time. 
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