
Absorbing Markov Chains: 

Absorbing State: A state in a Markov chain is called an absorbing 

state, if once it’s entered, it’s impossible to leave.   

  

Examples: 
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The absorbing state is B. 
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The absorbing states are A and B. 



Absorbing states in a transition diagram have no arrows pointing away from them.  

In a transition matrix, a row with a 1 on the diagonal and zeros everywhere else 

indicates an absorbing state. 

 

A Markov chain is an absorbing Markov chain if there is 

at least one absorbing state, and it’s possible to go from 

each non-absorbing state to at least one of the absorbing 

states.  

 

Examples: 

1. 

 

 

It has an absorbing state, B, and it’s possible to go from the only non-absorbing state, A, to 

B.  Therefore, this is an absorbing Markov chain.  
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2. 

 

 

 

 

It has an absorbing state, B, and it’s possible to go from each of the non-absorbing states, 

A and C, to B.  Therefore, it’s an absorbing Markov chain. 

3. 

 

 

 

 

 

It has an absorbing state, B, but it’ not possible to go from the non-absorbing states, C and 

D, to B.  Therefore, it’s not an absorbing Markov chain. 
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It has absorbing states, A and B, and it’s possible to go from the non-absorbing state C to 

an absorbing state.  Therefore, it’ an absorbing Markov chain. 
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It has an absorbing state, C, but it’s not possible to go from the non-absorbing states, A and 

B, to C.  Therefore, it’s not an absorbing Markov chain. 

 



Standard Form for an Absorbing Markov Chain: 

The transition matrix for an absorbing Markov chain is in standard form if the 

absorbing states precede the non-absorbing states, and the matrix can be partitioned 

into the form 
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, where A represents the absorbing states, N the non-

absorbing states, I is an identity matrix and O is a zero matrix. 

 

 

 

 
 

 

 

 

 

 



Examples:  Find standard form transition matrices for the following absorbing 

Markov chains.  Find 
1

S  from the given initial-state matrix, 
0

S . 

 

1. 
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, the identity matrix, I, is the number 1, and the zero matrix, O, is just 

the number 0.  If  0

         

.2 .8

A B

S = , then we first have to change the order of the states to 

get  0
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S = , and then multiply,  1 0
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2.  
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, reorder  0

         

.1 .3 .6

A B C

S =  into  0
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B A C

S =  and multiply, 
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, reorder  0

         

.1 .1 .6 .2

A B C D

S =  into  0

         

.1 .2 .1 .6

B D A C

S = , 
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For absorbing Markov chains, as the process continues, members of the population 

begin to accumulate in the absorbing states.  As the process continues indefinitely, all 

members of the population end up in an absorbing state.  We are interested in the 
probabilities of ending up in particular absorbing states.  For regular Markov chains, 

the limiting population distribution is independent of the initial-state matrix.  This is 

not the case for an absorbing Markov chain- where you end 

up depends on where you start. 

 

The Limiting Matrix for an Absorbing Markov Chain: 

If a standard form transition matrix P for an absorbing Markov chain is partitioned 

as 
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, then kP  approaches a limiting matrix, P , as k increases, where 

I O
P
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.  The matrix ( )
1

F I Q
−

= −  is called the fundamental matrix for P.  The 

identity matrix used in calculating F has the same dimension as the matrix Q.   

 



Examples: Convert the transition matrices to a standard form, and find the limiting 

matrix.  Determine the long-term distribution from the two given initial-

states. 
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 .3 .3R =  and  .4Q = , so ( ) ( ) ( )
1 1 1 5

3
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− − −
= − = − = =  and 
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.  This means that 



if you start in B and the chain continues indefinitely, the long-term probability of 

ending up in A is .5 and the long-term probability of ending up in C is .5. 

If  0
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a long-term distribution of  
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If  0
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. 

As you can see, in an absorbing Markov 

chain, where you start affects where you 

end up.  This is very different than regular 

Markov chains! 
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Now we’ll reorder  0

         

.6 .1 .1 .2
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S =  and multiply with P . 
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                                         .  So in the long-run, 30% of the 

population will end up in state C, and 70% will end up in state D.  Now we’ll reorder 

 0

         

.4 .2 .3 .1
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                                         .  So in the long-run, 47.1% of 

the population will end up in state C, and 52.9% will end up in state D. 

 

 
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More about the Limiting Matrix, P :  

The sum of the entries in each row of the matrix ( )
1

F I Q
−

= − , is the expected number 

of trials it will take to go from each non-absorbing state to some absorbing state.  

Examples: 

1. For an absorbing Markov chain with transition matrix 
1 1

2 2

      

 
0 1

A B

A

B
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, we get the 

standard form transition matrix 
1 1

2 2

      

1 0
 

B A

B

A

 
 
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.  ( )
1 1

1 1 1
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2 2
F I Q

− −

−    
= − = − = =   

   
, so the 

expected number of trials for a member of A to be absorbed into B is 2. 

 

 

 

 



Let’s verify this.  If X is the number of trials to go from A to B, then 

X 1 2 3 4 5 6 … 

P(X) 
1

2
 

1

4
 

1

8
 

1

16
 

1

32
 

1

64
 

… 

 

( )
1 1 1 1 1 1

1 2 3 4 5 6
2 4 8 16 32 64

1 1 1 1 1 1
                  

2 4 8 16 32 64

1 1 1 1 1
                      

4 8 16 32 64

1 1 1 1
                             

8 16 32 64

1
                              

16

E X =  +  +  +  +  +  +

= + + + + + +

+ + + + + +

+ + + + +

+
1 1

      
32 64

1 1
                                             

32 64

                                                               

+ + +

+ + +

 



Suppose that 
1 1 1 1 1 1

2 4 8 16 32 64
T = + + + + + + , then 

 
1 1 1 1 1 1 1

2 2 2 4 8 16 32
T

 
= + + + + + + 

 
, and this means that 

 
1 1 1 1

1.
2 2 2 2

T T T T= +  =  =   So ( )
1 1 1 1 1 1

1 2
2 4 8 16 32 64

E X = + + + + + + + = , and 

we’ve verified it! 

 

 

 

 

 

 

 

 



2. For an absorbing Markov chain with transition matrix 
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, find the 

expected number of trials to go from each non-absorbing state to an absorbing state. 

This transition matrix was analyzed previously with the standard form 
       

1 0 0 0

0 1 0 0
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.  ( )

1 1
10

1 7

10 5

7 2

1 0 .3 0 .7 0 0

0 1 .4 .6 .4 .4

A
F I Q
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− −
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, 

so the expected number of trials(steps) for a member of the population in state A to be 

absorbed is 
10 10

0
7 7
+ = , and the expected number of trials(steps) for a member of the 

population in state B to be absorbed is 
10 5 55

7 2 14
+ = . 

 



An Application of Absorbing Markov Chains: 

Once a year, company employees are given the 

opportunity to join one of three pension plans: A, B, or 

C.  Once an employee decides to join one of these plans, 

the employee can’t drop or switch to another plan.  

Past records indicate that each year 4% of employees 

join plan A, 14% join plan B, 7% join plan C, and 75% don’t join any of the plans.   

1. In the long-run, what percentages of employees will choose to join plan A, plan B, 

and plan C? 

Let’s start with a standard form transition matrix:
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( ) ( )
1 1

1 .75 .25 4F
− −

= − = = , so    4 .04 .14 .07 .16 .56 .28FR = = , and leads to a 

limiting matrix of 

             

1 0 0 0

0 1 0 0
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.  So in the long-run, 16% will choose plan 

A, 58% will choose plan B, and 28% will choose plan C. 

 

 

2. What’s the expected number of years for an employee to choose one of the three 

plans? 

( ) ( )
1 1

1 .75 .25 4F
− −

= − = = , so the expected number of years is 4. 

 


