
Gauss-Jordan Elimination: 

There is an extension of Gaussian Elimination called Gauss-Jordan Elimination. 

In general, the goal is to use row operations to reach a matrix with the following form: 
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There are as many 1’s as possible on the diagonal with zeros both below the 1’s and 

above the 1’s. 
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Now that the goal has been reached, you can easily see that the only solution is 
1

1x =  

and 
2

1x = − . 
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Now that the goal has been reached, convert the last row back into an equation: 

0 4= . 

Since this is impossible, the system has no solution.  If at any time in the process of 

reaching the goal, you get a row with zeros to the left of the bar and a non-zero 

number to the right, you may stop and conclude that the system has no solution. 
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Now that the goal has been reached, convert the last row back into an equation: 

0 0= . 

There is no contradiction, and we can’t uniquely solve for the values of the variables 

from the first row(equation): 
1 2

1x x+ = . 

When this happens, the system has infinitely many solutions, and we represent them 

as follows: 

Let 
2

x t= , and substitute this into the first equation to get 
1 1

1 1x t x t+ =  = − . 

The solutions of the system are given by 
1 2

1 ; where  is any real numberx t,x t t= − = . 
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Now that the goal has been reached, notice that there are no contradictions, and we 

can’t uniquely solve for the values of the variables.  The system has infinitely many 

solutions, and we’ll represent them by setting the variable furthest to the right equal 

to t: 
3

x t= .   

Substitute this into the last row(equation) to get 
2 3 2 2

2 2 2x x x t x t− = −  − = −  = − .  

Substitute the 3x  into the first row(equation) to get 

1 3 1 1
2 2 2x x x t x t− = −  − = −  = − . 

The solutions of the system are given by 

 
1 2 3

2 2 ; where  is any real numberx t ,x t ,x t t= − = − = . 
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So we can easily see that the only solution of this system is 1 3x =  and 2 1x = . 
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Since the last row is equivalent to 0 16= − , we know that this system has no solution. 
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We’ve gone as far as possible, there are no contradictions, and we can’t uniquely solve for 

the variables.  This means that there are infinitely many solutions.  Starting with the 

variable on the right, let 2x t= , and the first row turns into 1 12 3 2 3x t x t− = −  = − .  So 

the solutions are 1 2 3x t= −  and 2x t= ; where t is any real number. 
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        So the only solution of the systems is 1 2 32, 3, 1x x x= − = = .  
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We can’t go any further, there are no contradictions, and we can’t uniquely solve for the 

variables.  This mean that there are infinitely many solutions, and this time we’ll introduce 

two parameters.  Let 3x t=  and 2x s= .  If we substitute into the top row, we get 

1 12 1 2 1x s t x t s+ − =  = − + , so the solutions of the system are given by 

3 2 1, , 2 1x t x s x t s= = = − + ; where t and s are any real numbers. 

 

 

 

 

 



You might think that only systems with one solution or no solution are interesting or 

have practical applications, but systems with infinitely many solutions come up quite 

a bit in applications.  Even though a system has infinitely many mathematical 

solutions doesn’t mean that it has infinitely many practical solutions. 

 

Example 1: A company wants to lease a fleet of 12 airplanes with a combined carrying 

capacity of 220 passengers.  The three a available types of planes carry 10, 

15, and 20 passengers, respectively, and the leasing costs are $8,000, 

$14,000, and $16,000, respectively.  What’s the cheapest way for the 

company to accomplish its goal? 

First, we’ll figure out all the different combinations of three types of 

airplanes the company can lease by solving a linear system of equations: 

Let 1x =  the number of 10 passenger planes, 2x =  the number of 15 

passenger planes, and 3x = the number of 20 passenger planes. 
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Let’s solve this system using Gauss-Jordan Elimination. 

 

1
1 2 2 2 1 12 25

10

1 1 1 12 1 1 1 12 1 1 1 12 1 0 1 8

10 15 20 220 0 5 10 100 0 1 2 20 0 1 2 20
R R R R R RR R− + → − + →→

− −       
→ → →       

       
 

 

So the system has infinitely many solutions given by 1 2 38, 20 2 ,x t x t x t= − = − = ; where 

t is any real number.  But, 1 2 3, ,and x x x  are number of airplanes, so they have to be 

nonnegative whole numbers. 

So 

8 0

20 2 0

0

t

t

t

− 

− 



  and t must be a whole number.  This means that 

8

10

0

t

t

t







, and if you 

combine them you get 8 10t   and t is a whole number.  So instead of infinitely many 

solutions, we actually get three of them because t must be 8, 9 or 10.  So the three 

combinations of airplanes that they can lease are 1 2 30, 4, 8x x x= = =  and 



1 2 31, 2, 9x x x= = =  and 1 2 32, 0, 10x x x= = = .  Now we have to determine which of these 

three combinations is the cheapest. 

1 2 30, 4, 8;  cost $184,000x x x= = = =  

1 2 31, 2, 9;  cost $180,000x x x= = = =  

1 2 32, 0, 10;  cost $176,000x x x= = = =  

So the cheapest way for the company to achieve its goal is to lease 2 of the 10 passenger 

planes and 10 of the 20 passenger planes. 

 

 

 

 

 

 

 

 



Example 2: The diagram shows the traffic flow at the intersections of four one-way 

streets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The traffic rates are in cars per hour. 
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In order to have smooth traffic flow, the number of cars entering an intersection must 

equal the number of cars leaving an intersection.  This leads to four equations-one for 

each intersection: 

Intersection Equation 

Norwood and Warren 
 

1 2 1200x x+ =  

Bradford and Warren 2 3 1800x x+ =  

Bradford and Parkland 3 4 2400x x+ =  

Norwood and Parkland 1 4 1800x x+ =  

 

 

 

 

 



Here’s the augmented matrix corresponding to the system of linear equations. 

1 1 0 0 1200

0 1 1 0 1800

0 0 1 1 2400

1 0 0 1 1800

 
 
 
 
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 
 
 
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The result of Gauss-Jordan Elimination is the following matrix: 

1 0 0 1 1800

0 1 0 1 600

0 0 1 1 2400

0 0 0 0 0

 
 − −
 
 
 
 

 

So the mathematical solution is 

 4 3 2 1, 2400 , 600, 1800 ,where  is any real #x t x t x t x t t= = − = − = −  

 



Since the traffic flows must be nonnegative, it must be that 

0

2400

600

1800

t

t

t

t









 

In order for all of these inequalities to be true, it must be that 600 1800t  .  So the 

true solution of the system is 

4 3 2 1, 2400 , 600, 1800 ,where 600 1800x t x t x t x t t= = − = − = −   . 

Here are the maximum and minimum traffic flows in the network: 

Street Section Minimum Flow Maximum Flow 

Norwood between Parkland and Warren, 1x  0 1200 

Warren between Bradford and Norwood, 2x  0 1200 

Bradford between Warren and Parkland, 3x  600 1800 

Parkland between Bradford and Norwood, 4x  600 1800 

 



If traffic on Warren between Bradford and Norwood is restricted to 100 cars per hour 

due to construction, here’s the traffic flow in the rest of the system. 

2 600 100 700x t t= − =  =  

4 3 1700, 2400 700 1700, 1800 700 1100x x x= = − = = − =  

 

If the following tolls are charged, let’s determine the least and greatest amount of 

money generated from the tolls per hour. 

 

Street Section Toll 

Norwood between Parkland and Warren, 1x  $.25 

Warren between Bradford and Norwood, 2x  $.50 

Bradford between Warren and Parkland, 3x  $.20 

Parkland between Bradford and Norwood, 4x  $.15 

 

 



The total toll per hour in cents is 

( ) ( ) ( ) ( )
1 2 3 425 50 20 15

25 1800 50 600 20 2400 15

20 63000; 600 1800

x x x x

t t t t

t t

+ + +

= − + − + − +

= +  

 

So the maximum toll amount will occur for 1800t = , giving a maximum toll amount 

of 99,000 cents or $990, and the minimum toll amount will occur for 600t = , giving a 

minimum toll amount of 75,000 cents or $750. 

 

 

 

 

 

 

 


