Math 1324 Review 4

A survey of a group of military personnel revealed that the respondents could be categorized as follows:

20 officers

27 minorities
19 women
5 women officers
8 minority women
10 minority officers
3 women minority officers
6 non-minority enlisted men

1. Complete the following Venn diagram of the survey:

- 2. How many were interviewed? 3. How many were enlisted minority women? 52
- **4.** How many were male minority officers?

7

A jar contains 5 discs labeled 2,4,6,8, and 10, and another jar contains 2 blue and 3 yellow marbles. One disc is drawn, and then a marble is drawn.

5. Complete the sample space, S, for this experiment.

(2,blue)	(4,blue)	(6, <i>blue</i>)	(8, <i>blue</i>)	(10, <i>blue</i>)
(2, yellow)	(4, yellow)	(6, yellow)	(8, yellow)	(10, yellow)

6. List the outcomes in the event, F, that the marble is blue.

$$F = \{(2,blue), (4,blue), (6,blue), (8,blue), (10,blue)\}$$

7. List the outcomes in the event, E, that the disc shows a number greater than 5.

$$E = \{(6, blue), (6, yellow), (8, blue), (8, yellow), (10, blue), (10, yellow)\}$$

8. Are the outcomes in this sample space equally likely?

A single card is randomly drawn from a standard 52-card deck. Determine the following probabilities or odds:

9. probability of a red queen

$$P(\text{red queen}) = \frac{\text{# of red queens}}{\text{# of cards}} = \frac{2}{52} = \boxed{\frac{1}{26}}$$

10. probability of a red card or a face card

$$P(\text{red card or face card}) = P(\text{red card}) + P(\text{face card}) - P(\text{red face card})$$
$$= \frac{26}{52} + \frac{12}{52} - \frac{6}{52}$$
$$= \frac{32}{52} = \boxed{\frac{8}{13}}$$

OR

$$P(\text{red card or face card}) = \frac{\text{# of red cards or face cards}}{\text{# of cards}} = \frac{32}{52} = \boxed{\frac{8}{13}}$$

11. probability of a black card, given that it is a 10

$$P(\text{black card} | 10) = \frac{P(\text{black } 10)}{P(10)} = \frac{\frac{2}{52}}{\frac{4}{52}} = \boxed{\frac{1}{2}}$$

OR

$$P(\text{black card} | 10) = \frac{\text{# of black } 10\text{'s}}{\text{# of } 10\text{'s}} = \frac{2}{4} = \boxed{\frac{1}{2}}$$

12. probability of a face card, given that it is a king

$$P(\text{face card} | \text{king}) = \boxed{1}$$
, a king is a face card!

13. the odds in favor of drawing a club

$$P(\text{clubs}): P(\text{clubs}')$$

$$\frac{13}{52}: \frac{39}{52} \qquad \text{OR} \quad \frac{P(\text{clubs})}{P(\text{clubs}')} = \frac{\frac{13}{52}}{\frac{39}{52}} = \boxed{\frac{1}{3}}$$

$$\boxed{1:3}$$

14. the odds in favor of drawing a face card or a 9

$$P(\text{face card or } 9): P(\text{face card or } 9)')$$

$$\frac{16}{52}: \frac{36}{52}$$

$$P(\text{face card or } 9)') = \frac{\frac{16}{52}}{\frac{36}{52}} = \boxed{\frac{4}{9}}$$

$$\boxed{4:9}$$

One orange and four red marbles are placed in Box I. Two red and three orange marbles are placed in Box II. A box is chosen at random, and a marble is selected from it.

16.
$$P(red)$$

$$P(red) = \frac{1}{2} \cdot \frac{4}{5} + \frac{1}{2} \cdot \frac{2}{5} = \boxed{\frac{3}{5}}$$

$$P(orange) = \frac{1}{2} \cdot \frac{1}{5} + \frac{1}{2} \cdot \frac{3}{5} = \boxed{\frac{2}{5}} \qquad \text{OR} \qquad P(orange) = 1 - P(orange') = 1 - P(red) = 1 - \frac{3}{5} = \boxed{\frac{2}{5}}$$

18. P(Box I/red)

$$P(Box \ I/red) = \frac{P(Box \ I \ and \ red)}{P(red)} = \frac{\frac{1}{2} \cdot \frac{4}{5}}{\frac{3}{5}} = \boxed{\frac{2}{3}}$$

19. $P(Box\ I/orange)$

$$P(Box\ I/orange) = \frac{P(Box\ I\ and\ orange)}{P(orange)} = \frac{\frac{1}{2} \cdot \frac{1}{5}}{\frac{2}{5}} = \boxed{\frac{1}{4}}$$

20. P(Box II/red)

$$P(Box II/red) = \frac{P(Box II \ and \ red)}{P(red)} = \frac{\frac{1}{2} \cdot \frac{2}{5}}{\frac{3}{5}} = \boxed{\frac{1}{3}}$$

21. P(Box II/orange)

$$P(Box II/orange) = \frac{P(Box II \ and \ orange)}{P(orange)} = \frac{\frac{1}{2} \cdot \frac{3}{5}}{\frac{2}{5}} = \boxed{\frac{3}{4}}$$

Suppose that P(E) = .62, P(F) = .25, and $P(E \cap F) = .16$.

22. Complete the following probability diagram:

23.
$$P(E \cup F)$$

$$.46 + .16 + .09 = \boxed{.71}$$

26.
$$P(E|F)$$

$$P(E|F) = \frac{P(E \cap F)}{P(F)} = \frac{.16}{.25} = \boxed{\frac{16}{25}}$$

24.
$$P(E \cap F')$$

27.
$$P(F | E)$$

$$P(F | E) = \frac{P(F \cap E)}{P(E)} = \frac{.16}{.62} = \boxed{\frac{8}{31}}$$

28. Are *E* and *F* independent?

No

The table gives the results of a survey question which asked: "Are federal income taxes too high, about right, too low, or don't know?". If a respondent is chosen at random, determine the following:

	Too High	About Right	Too Low	Don't Know	Total
Male	289	192	6	10	497
Female	257	153	3	14	427
Total	546	345	9	24	924

29. P(Female) 30. P(About Right) 31. P(Male or Too Low) 32. P(Female and Don't Know)

$$\frac{427}{924} = \boxed{\frac{61}{132}}$$

$$\frac{427}{924} = \boxed{\frac{61}{132}} \qquad \qquad \frac{345}{924} = \boxed{\frac{115}{308}} \qquad \qquad \frac{500}{924} = \boxed{\frac{125}{231}}$$

$$\frac{500}{924} = \boxed{\frac{125}{231}}$$

$$\frac{14}{924} = \boxed{\frac{1}{66}}$$

25. $P(E' \cap F')$

.29

33. P(Female|Don't Know) **34.** Are *Female* and *Don't Know* independent?

$$\frac{14}{24} = \boxed{\frac{7}{12}}$$

- **35.** Three cards are drawn at random from an ordinary 52-card deck.
 - a) How many different 3-card hands are possible?

$$C_{52,3} = \frac{52!}{49! \cdot 3!} = \frac{52 \cdot 51 \cdot 50}{3 \cdot 2 \cdot 1} = 26 \cdot 17 \cdot 50 = \boxed{22,100}$$

b) What is the probability that the 3-card hand has *exactly two* kings?

$$P(2 \text{ kings}) = \frac{C_{4,2} \cdot C_{48,1}}{22,100} = \frac{\frac{4!}{2! \cdot 2!} \cdot 48}{22,100} = \frac{6 \cdot 48}{22,100} = \frac{72}{5525}$$

c) What is the probability that the 3-card hand has *exactly two* face cards?

$$P(2 \text{ face cards}) = \frac{C_{12,2} \cdot C_{40,1}}{22,100} = \frac{66 \cdot 40}{22,100} = \frac{132}{1105}$$

d) What is the probability that the 3-card hand contains <u>at least 1</u> black card?

$$P(\text{at least 1 black card}) = 1 - P(\text{no black cards}) = 1 - \frac{C_{26,3}}{22,100} = 1 - \frac{\frac{26!}{23!3!}}{22,100} = 1 - \frac{\frac{26:25\cdot24}{32\cdot1}}{22,100}$$

$$=1 - \frac{2600}{22,100} = 1 - \frac{26}{221} = 1 - \frac{2}{17} = \boxed{\frac{15}{17}}$$

36. Two names are randomly drawn from a hat without replacement. Three of the names in the hat are Aggies, two are Longhorns, and one is a Cougar. Let the random variable, *x*, be the total number of Aggies selected.

The sample space for this experiment is

(L_1,A_1)	(L_1,A_2)	(L_1, A_3)	(L_1,C_1)
$\left(L_{2},A_{1} ight)$	(L_2,A_2)	(L_2,A_3)	(L_2,C_1)
(A_1,C_1)	(A_2,C_1)	(A_3,C_1)	(L_1,L_2)
(A_1, A_2)	(A_1, A_3)	(A_2, A_3)	

a) Complete the probability distribution for the random variable:

x	0	1	2
P(x)	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{1}{5}$

b) Complete the histogram for the random variable:

c) Find the expected value of the random variable.

$$E(x) = 0 \cdot \frac{1}{5} + 1 \cdot \frac{3}{5} + 2 \cdot \frac{1}{5} = \boxed{1}$$