Distance on a Line:

If P, Q, and R are points on a line, a line segment, or a ray, and Q is between P and R, then d(P,Q)+d(Q,R)=d(P,R).

If
$$d(G,K) = 28$$
, $d(H,J) = 10$, and $d(G,H) = d(H,I) = d(I,J)$, then find $d(H,I)$, $10 = d(H,J) = d(H,I) + d(I,J) = 2d(H,I) \Rightarrow d(H,I) = \boxed{5}$ $d(J,K)$, $d(G,J) = d(G,H) + d(H,I) + d(I,J) = 15$, $d(J,K) = d(G,K) - d(G,J) = 28 - 15 = \boxed{13}$ $d(I,G)$, $d(I,G) = d(G,H) + d(H,I) = \boxed{10}$ $d(I,K)$, $d(I,K) = d(I,J) + d(J,K) = \boxed{18}$

If d(D,W) = d(O,N), then what can you say about d(D,O) and d(W,N)?

$$d(D,W) = d(D,O) + d(O,W)$$
, and $d(O,N) = d(O,W) + d(W,N)$

$$sod(D,O) + d(O,W) = d(O,W) + d(W,N) \Rightarrow d(D,O) = d(W,N)$$

Perimeter:

It's the sum of the lengths of the sides of a polygon. Its units are units of length.

Circumference:

It's like perimeter for a circle. It's the distance around the circle. For every circle, the ratio of its circumference to its diameter, is always π . So the circumference can be determined by $C = \pi D$ or $C = 2\pi r$. Its units are units of length.

Area of a Rectangle:

It's the number of square regions or units required to fill the rectangular region.

	3 ft		
2 ft	1	2	3
4 Il	4	5	6

A rectangle with side measurements of 2 ft and 3 ft, can be filled with 6 square units, so its area is 6 ft^2 . In general, the area of a rectangle is the product two of its perpendicular side measurements. Its units are units of squared length.

Area of a Parallelogram:

Just cut off the triangle, and re-assemble the pieces into a rectangle.

Area of a Parallelogram = bh.

Area is 72 m²

8 m

9 m

Area of a Triangle:

Make a copy of the triangle, and flip it and attach it to the original triangle to get a parallelogram.

The area of the triangle is half the area of the parallelogram.

Area of a Triangle = $\frac{1}{2}bh$.

Area is 44 cm² 8 cm

Area of a Trapezoid:

Cut off the two triangles, and assemble them into a single triangle.

Here's the rectangle that's left behind.

The area of the trapezoid is the sum of the areas of the rectangle and the triangle.

Area of a Trapezoid =
$$bh + \frac{1}{2}(a-b)h$$

= $bh + \frac{1}{2}ah - \frac{1}{2}bh$
= $\frac{1}{2}ah + \frac{1}{2}bh$
= $\frac{1}{2}(a+b)h$

Let's find a formula for the area of a circle by cutting it into equal sectors, and then assembling them into a parallelogram-like shape.

As the number of sectors increases, the assemble shape gets closer to a parallelogram with base of πr and a height of r, whose area is πr^2 .

Area of a Circle = πr^2 .

Area is $9\pi \,\mathrm{m}^2$

Find the area of the shaded regions.

Area = Area of large triangle – Area of small triangle = $120 \text{ in}^2 - 48 \text{ in}^2 = 72 \text{ in}^2$

Area = Area of large circle – Area of small circle = $16\pi cm^2 - 4\pi cm^2 = 12\pi cm^2$

Area = Area of semi-circle – Area of triangle

$$= 25\pi i n^2 - 24 i n^2 = (25\pi - 24) i n^2$$