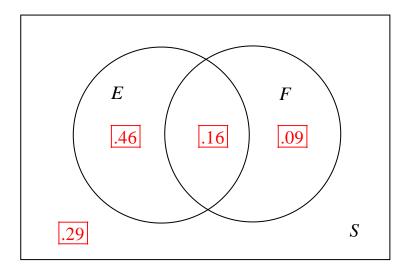
Math 1351 Review #2(answers)

- **1.** Suppose that P(E) = .62, P(F) = .25, and $P(E \cap F) = .16$.
 - a) Complete the following probability diagram:



- **b**) Find $P(E \cup F)$
- $.46 + .16 + .09 = \boxed{.71}$
- c) Find $P(E \cap \overline{F})$
 - .46
- **d**) Find $P(\bar{E} \cap \bar{F})$
 - .29

- e) Find P(E|F)
- **f**) Find P(F | E)
- **g**) Find the odds in favor of event F.

$$\frac{P(E \cap F)}{P(F)} = \frac{.16}{.25} = \boxed{.64}$$
 $\frac{P(E \cap F)}{P(E)} = \frac{.16}{.62} = \boxed{\frac{8}{31}}$

$$P(F):P(\overline{F})$$
.25:.75
$$\boxed{1:3}$$

- **2.** At a company, ID numbers consist of two letters(A-Z) followed by 5 digits(0-9) with no repeating letters or digits.
 - a) How many different ID numbers are possible?

	$_{26}P_2 = 650$	$_{10}P_{5}=30,240$	19,656,000
Ī	# of two letter permutations	# of 5 digit permutations	Total

OR

26	25	10	9	8	7	6	19,656,000
1 st letter	2 nd letter	1 st digit	2 nd digit	3 rd digit	4 th digit	5 th digit	Total

b) What is the probability that a randomly assigned ID number would have the letters B and P on it?

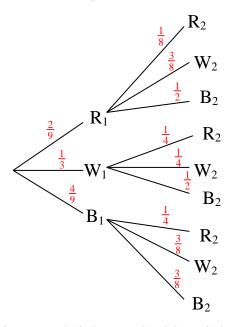
В	P	10	9	8	7	6	30,240
1 st letter	2 nd letter	1 st digit	2 nd digit	3 rd digit	4 th digit	5 th digit	Total

OR

P	В	10	9	8	7	6	30,240
1 st letter	2 nd letter	1 st digit	2 nd digit	3 rd digit	4 th digit	5 th digit	Total

$$\frac{\text{# of ID's with B and P}}{\text{# of ID's}} = \frac{60,480}{19,656,000} = \boxed{\frac{1}{325}}$$

- **3.** A box contains two red, three white, and four blue tickets. Two tickets will be randomly drawn without replacement.
 - a) Complete the probability tree for this experiment.



b) Find the probability of drawing a red ticket and a blue ticket in either order.

$$P(\text{red and blue}) = P(R_1 \cap B_2) + P(B_1 \cap R_2) = \frac{2}{9} \cdot \frac{1}{2} + \frac{4}{9} \cdot \frac{1}{4} = \boxed{\frac{2}{9}}$$

c) Find the probability of drawing a red ticket on the second draw.

$$P(R_2) = \frac{2}{9} \cdot \frac{1}{8} + \frac{1}{3} \cdot \frac{1}{4} + \frac{4}{9} \cdot \frac{1}{4} = \frac{1}{36} + \frac{1}{12} + \frac{1}{9} = \boxed{\frac{2}{9}}$$

d) Find the probability of drawing a blue ticket on the second draw.

$$P(B_2) = \frac{2}{9} \cdot \frac{1}{2} + \frac{1}{3} \cdot \frac{1}{2} + \frac{4}{9} \cdot \frac{3}{8} = \frac{1}{9} + \frac{1}{6} + \frac{1}{6} = \begin{vmatrix} 4\\9 \end{vmatrix}$$

e) Find the probability of drawing a white ticket on the second draw.

$$P(W_2) = 1 - P(R_2) - P(B_2) = 1 - \frac{2}{9} - \frac{4}{9} = \frac{1}{3}$$

f) Find the probability that both tickets drawn will have the same color.

$$P(\text{same color}) = P(R_1 \cap R_2) + P(W_1 \cap W_2) + P(B_1 \cap B_2) = \frac{2}{9} \cdot \frac{1}{8} + \frac{1}{3} \cdot \frac{1}{4} + \frac{4}{9} \cdot \frac{3}{8}$$
$$= \frac{1}{36} + \frac{1}{12} + \frac{1}{6} = \boxed{\frac{5}{18}}$$

g) If a blue ticket is drawn second, what is the probability that a red ticket was drawn first?

$$P(R_1 | B_2) = \frac{P(R_1 \cap B_2)}{P(B_2)} = \frac{\frac{2}{9} \cdot \frac{1}{2}}{\frac{4}{9}} = \boxed{\frac{1}{4}}$$

- 4. A team of four players is to be selected from a group of eight boys and six girls.
 - a) How many different teams are possible?

$$_{14}C_4 = \boxed{1001}$$

b) How many different teams are possible if there must be two boys and two girls?

$_{8}C_{2}=28$	$_{6}C_{2}=15$	420
Which 2 boys?	Which 2 girls?	Total

c) How many different teams are possible if they must all be boys?

$$_{8}C_{4} = \boxed{70}$$

d) If a team is randomly assembled, what is the probability that it will have two boys and two girls?

$$\frac{420}{1001} = \boxed{\frac{60}{143}}$$

e) If a team is randomly assembled, what is the probability that it will have all boys?

$$\frac{70}{1001} = \boxed{\frac{10}{143}}$$

f) If a team is randomly assembled, what is the probability that it will have at least one girl?

$$P(\text{at least one girl}) = 1 - P(\text{no girls}) = 1 - P(\text{all boys}) = 1 - \frac{10}{143} = \frac{133}{143}$$

5. The table gives the results of a survey question which asked: "Are federal income taxes too high, about right, too low, or don't know?". If a respondent is chosen at random, determine the following:

	Too High	About Right	Too Low	Don't Know	Total
Male	289	192	6	10	497
Female	257	153	3	14	427
Total	546	345	9	24	924

$$\mathbf{a}) P(Female)$$

$$\frac{427}{924} = \boxed{\frac{61}{132}}$$

b)
$$P(About Right)$$

$$\frac{345}{924} = \boxed{\frac{115}{308}}$$

$$\frac{500}{924} = \boxed{\frac{125}{231}}$$

e)
$$P(Female/Don't Know)$$

$$\frac{14}{100} = \frac{7}{100}$$

$$\mathbf{f}$$
) $P(Don't Know/Male)$

$$\frac{14}{924} = \boxed{\frac{1}{66}}$$

$$\frac{14}{24} = \boxed{\frac{7}{12}}$$

$$\frac{10}{497}$$

- 6. A player rolls a fair die and receives a number of dollars equal to the number of dots showing on the face of the die.
 - a) If the game costs \$1 to play, what's the expected value of the game?

Let *X* be the gross winnings in a single play of the game.

X	\$1	\$2	\$3	\$4	\$5	\$6
P(X)	1_	1	1_	1_	1_	1_
()	6	6	6	6	6	6

$$E(X) = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{4}{6} + \frac{5}{6} + \frac{6}{6} = \frac{21}{6} = \$3.50$$

If you pay \$1 per play, the expected value of the game is \\$2.50\|.

b) If the game costs \$2 to play, what's the expected value of the game?

If you pay \$2 per play, the expected value of the game is \$1.50.

c) What is the most the player should be willing to pay to play the game and not lose money in the long run?

7. A die is rolled 100 times with the following results:

Outcome	1	2	3	4	5	6
Frequency	17	16	17	19	13	18

a) Find the experimental probability of rolling a 4.

19 100

b) Find the experimental probability of rolling an odd number.

 $\frac{47}{100}$