Exponential Growth and Decay Models:

$$A(t) = A_0 e^{kt}; t \ge 0, k \ne 0$$

For k > 0, the function models unlimited(exponential) growth, and k is called the growth rate.

For k < 0, the function models exponential decay, and k is called the decay rate.

Examples:

1. The number of bacteria in a culture is modeled by the exponential growth function

 $A(t) = 1000e^{.01t}$, where t is measured in hours.

a) What is the initial number of bacteria?

$$1000e^{.01\cdot 0} = 1000 \cdot 1 = \boxed{1000}$$

b) What is the population after 4 hours?

$$A(4) = 1000e^{.04} = 1040.8107...$$
 ≈ 1041

$$1000e^{.01t} = 1700 \Rightarrow e^{.01t} = 1.7$$

$$\Rightarrow .01t = ln(1.7) \Rightarrow t = \frac{ln(1.7)}{.01} = 53.0628... \approx 53hrs$$

d) When will the number of bacteria double?

$$1000e^{.01t} = 2000 \Rightarrow e^{.01t} = 2$$
$$\Rightarrow .01t = ln(2) \Rightarrow t = \frac{ln(2)}{.01} = 69.3147... \approx 69hrs$$

- 2. The decay of Iodine-131 is modeled by the exponential decay function $A(t) = 100e^{-.087t}$, where t is in days, and the amount of Iodine is in grams.
 - a) What is the initial amount of Iodine?

$$100e^{-.087\cdot 0} = 100\cdot 1 = \boxed{100grams}$$

b) How much Iodine is left after 9 days?

$$A(9) = 100e^{-.087(9)} = 45.703... \approx \boxed{46g}$$

c) When will 70 grams of Iodine be left?

$$100e^{-.087t} = 70 \Rightarrow e^{-.087t} = .7 \Rightarrow -.087t = ln(.7)$$
$$\Rightarrow t = \frac{ln(.7)}{-.087} = 4.0997... \approx 4 days$$

d) What is the half-life of iodine-131?

$$100e^{-.087t} = 50 \Rightarrow e^{-.087t} = .5 \Rightarrow -.087t = ln(.5)$$
$$\Rightarrow t = \frac{ln(.5)}{-.087} = 7.9672... \approx 8 days$$

3. The half-life of Radium is 1690 years. If 10 grams is present now, how much will

be present in 50 years?

$$A(t) = 10e^{kt} \Rightarrow 10e^{1690k} = 5 \Rightarrow e^{1690k} = .5$$

$$\Rightarrow 1690k = \ln(.5) \Rightarrow k = \frac{\ln(.5)}{1690}$$

$$\Rightarrow A(t) = 10e^{\frac{t\ln(.5)}{1690}}$$

$$A(50) = 10e^{\frac{50\ln(.5)}{1690}} = 9.797... \approx 9.8g$$

Logistic Growth and Decay Models:

$$P(t) = \frac{c}{1 + ae^{-bt}}; t \ge 0, a > 0, c > 0, b \ne 0$$

For b>0, the function models limited(logistic) growth, and c is called the carrying capacity.

For
$$t$$
 large, $\frac{c}{1+ae^{-bt}} \approx \frac{c}{1} = c$

For b < 0, the function models logistic decay. Similar to exponential decay.

For t large, $\frac{c}{1+ae^{-bt}} \approx 0$

Example:

A model for the percentage of companies using Microsoft Word is the logistic growth function $P(t) = \frac{99.744}{1+3.01e^{-.799t}}$ where t is the number of years since the end of 1984.

a) What was the percentage of Word users at the end of 1984?

$$P(0) = \frac{99.744}{1 + 3.01e^{-.799(0)}} = \frac{99.744}{4.01} = 24.8738... \approx 24.9\%$$

b) What was the percentage of Word users at the end of 1990?

$$P(6) = \frac{99.744}{1 + 3.01e^{-.799(6)}} = 97.3187... \approx 97.3\%$$

c) When did the percentage of Word users reach 90%?

$$\frac{99.744}{1+3.01e^{-.799t}} = 90 \Rightarrow 90(1+3.01e^{-.799t}) = 99.744 \Rightarrow 1+3.01e^{-.799t} = \frac{99.744}{90}$$

$$\Rightarrow e^{-.799t} = \frac{99.744}{90} - 1 \Rightarrow t = \frac{ln\left(\frac{99.744}{90} - 1\right)}{3.01} = 4.1615... \approx 4.2 \, yrs \text{ after the end of } 1984$$

d) What is the carrying capacity percentage for Word users?

Sequences:

A sequence is an ordered list of infinitely many numbers.

They can be represented by implying a pattern(partial list), giving a direct formula, or giving a recursive formula.

<u>Implying a pattern(partial list):</u>

{Determine the next two terms of each sequence.}

$$\{a_n\} = \{1, 2, 3, 4, \ldots\}$$

$$5, 6$$

$$\{c_n\} = \{1, -1, 1, -1, \ldots\}$$

$$1, -1$$

$$\{b_n\} = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$$

$$\frac{1}{5}, \frac{1}{6}$$

$$\{d_n\} = \{1, -2, 3, -4, 5, -6, \dots\}$$

$$7, -8$$

$$\{e_n\} = \{1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}, -\frac{1}{6}, \dots\}$$

$$\frac{1}{7}, -\frac{1}{8}$$

<u>Direct Formula:</u> Unless stated otherwise, assume the starting subscript value is 1. {Determine the first five terms of each sequence.}

$$a_n = n$$

$$c_n = \left(-1\right)^{n+1}$$

$$1, -1, 1, -1, 1$$

$$b_n = \frac{1}{n}$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$$

$$d_n = \left(-1\right)^{n+1} n$$

$$e_n = \frac{\left(-1\right)^{n+1}}{n}$$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}$$

<u>Recursive Formula:</u> {Determine the first five terms of each sequence.}

$$a_1 = 1, a_{n+1} = 1 + a_n; n \ge 1$$

$$b_1 = 1, b_{n+1} = \frac{1}{1 + \frac{1}{b_n}}; n \ge 1$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}$$

$$c_1 = 1, c_{n+1} = -c_n; n \ge 1$$

1,-1,1,-1,1

$$d_1 = 1, d_{n+1} = -d_n + (-1)^n; n \ge 1$$

1,-2,3,-4,5

$$e_{1} = 1, e_{n+1} = \frac{1}{-\frac{1}{e_{n}} + (-1)^{n}}; n \ge 1$$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \frac{1}{5}$$

$$f_1 = 1, f_2 = 1, f_{n+2} = f_{n+1} + f_n; n \ge 1$$

1,1,2,3,5

{Fibonacci}

Sigma or Summation Notation:

$$a_1 + a_2 + a_3 + \cdots + a_n$$
 can be abbreviated as $\sum_{k=1}^n a_k$. In other words,

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + \dots + a_n.$$

1. Expand
$$\sum_{k=1}^{3} k^2$$
.

$$1^2 + 2^2 + 3^2$$

2. Expand
$$\sum_{k=1}^{4} (-1)^k$$
.

$$(-1)+1+(-1)+1$$

3. Compress
$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$$
.

$$\sum_{k=1}^{5} \frac{1}{k}$$

 $\sum_{k=1}^{n} a_k$ is considered to be a sum of a portion of the terms of the sequence $\{a_1, a_2, a_3, \ldots\}$, and is sometimes referred to as a *finite series*.

Properties of Finite Series: If $\{a_n\}$ and $\{b_n\}$ are sequences and c is any real number, then

1.
$$\sum_{k=1}^{n} (ca_k) = c \sum_{k=1}^{n} a_k$$

Why?
$$\sum_{k=1}^{n} (ca_k) = (ca_1 + ca_2 + \dots + ca_n) = c(a_1 + a_2 + \dots + a_n) = c\sum_{k=1}^{n} a_k$$

2.
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

Why?
$$\sum_{k=1}^{n} (a_k + b_k) = (a_1 + b_1) + \dots + (a_n + b_n) = (a_1 + a_2 + \dots + a_n) + (b_1 + b_2 + \dots + b_n)$$
$$= \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

3.
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

Why?
$$\sum_{k=1}^{n} (a_k - b_k) = (a_1 - b_1) + \dots + (a_n - b_n) = (a_1 + a_2 + \dots + a_n) - (b_1 + b_2 + \dots + b_n)$$
$$= \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$

4.
$$\sum_{k=j+1}^{n} a_k = \sum_{k=1}^{n} a_k - \sum_{k=1}^{j} a_k$$
 for $1 \le j \le n-1$

Why?
$$\sum_{k=1}^{n} a_k - \sum_{k=1}^{j} a_k = (a_1 + a_2 + \dots + a_j + a_{j+1} + \dots + a_n) - (a_1 + a_2 + \dots + a_j)$$
$$= a_{j+1} + \dots + a_n = \sum_{k=1}^{n} a_k$$

Special Formulas for Finite Series:

$$\sum_{k=1}^{n} c = c + c + c + c + \cdots + c = nc$$
(n terms)

1.
$$\sum_{k=1}^{5} 2$$

$$5 \cdot 2 = \boxed{10}$$

2.
$$\sum_{k=1}^{5,000} 3$$

$$5,000 \cdot 3 = \boxed{15,000}$$

3.
$$\sum_{k=12}^{200} 2 \qquad \left\{ \sum_{k=12}^{200} 2 = \sum_{k=1}^{200} 2 - \sum_{k=1}^{11} 2 \right\}$$

$$400 - 22 = \boxed{378}$$

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$
 (the sum of the first n counting numbers)

Let $S = 1 + 2 + 3 + \dots + (n-1) + n$. Then also, $S = n + (n-1) + \dots + 2 + 1$.

$$S = 1 + 2 + 3 + \dots + (n-1) + n$$

$$+S = n + (n-1) + (n-2) + \dots + 2 + 1$$

$$2S = (n+1) + (n+1) + (n+1) + \dots + (n+1)$$

$$\xrightarrow{n \text{ times}}$$

$$\Rightarrow 2S = n(n+1) \Rightarrow S = \frac{n(n+1)}{2}$$

So
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
.

1.
$$\sum_{k=1}^{100} k$$

$$\frac{100 \cdot 101}{2} = \boxed{5,050}$$

$$2. \sum_{k=1}^{100} (k+2)$$

$$= \sum_{k=1}^{100} k + \sum_{k=1}^{100} 2 = 5,050 + 200 = \boxed{5,250}$$

3.
$$\sum_{k=1}^{100} (2k)$$

$$=2\sum_{k=1}^{100} k = 2.5,050 = \boxed{10,100}$$

4.
$$\sum_{k=11}^{100} k \qquad \left\{ \sum_{k=11}^{100} k = \sum_{k=1}^{100} k - \sum_{k=1}^{10} k \right\}$$

$$=5,050 - \frac{10 \cdot 11}{2} = 5,050 - 55 = \boxed{4,995}$$

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \dots + n^2$$
 (the sum of the squares of the first n counting numbers)

$$\sum_{k=1}^{n} (k+1)^{3} - \sum_{k=1}^{n} k^{3} = \left[2^{3} + 3^{3} + \dots + (n+1)^{3} \right] - \left[1^{3} + 2^{3} + \dots + n^{3} \right] = (n+1)^{3} - 1$$

And

$$\sum_{k=1}^{n} (k+1)^{3} - \sum_{k=1}^{n} k^{3} = \sum_{k=1}^{n} \left[(k+1)^{3} - k^{3} \right] = \sum_{k=1}^{n} \left(k^{3} + 3k^{2} + 3k + 1 - k^{3} \right) = \sum_{k=1}^{n} \left(3k^{2} + 3k + 1 \right)$$
$$= 3 \sum_{k=1}^{n} k^{2} + 3 \sum_{k=1}^{n} k + \sum_{k=1}^{n} 1 = 3 \sum_{k=1}^{n} k^{2} + \frac{3n(n+1)}{2} + n$$

So
$$3\sum_{k=1}^{n} k^2 + \frac{3n(n+1)}{2} + n = (n+1)^3 - 1.$$

This means that
$$\sum_{k=1}^{n} k^2 = \frac{(n+1)^3 - 1 - \frac{3n(n+1)}{2} - n}{3} = \frac{n(n+1)(2n+1)}{6}.$$

1.
$$\sum_{k=1}^{12} k^2$$

$$\frac{12 \cdot 13 \cdot 25}{6} = \boxed{650}$$

$$2. \sum_{k=1}^{12} (k^2 - 4)$$

$$= \sum_{k=1}^{12} k^2 - \sum_{k=1}^{12} 4 = 650 - 48 = \boxed{602}$$

3.
$$\sum_{k=1}^{12} (2k^2 - k + 1)$$

$$=2\sum_{k=1}^{12}k^2-\sum_{k=1}^{12}k+\sum_{k=1}^{12}1=2\cdot 650-\frac{12\cdot 13}{2}+12=1300-78+12=\boxed{1,234}$$